Application of 22536-61-4, Adding some certain compound to certain chemical reactions, such as: 22536-61-4, name is 2-Chloro-5-methylpyrimidine,molecular formula is C5H5ClN2, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound 22536-61-4.
2-Chloro-5-methyl-pyrimidine (18 mL, 151 mmol), potassium (Z)-but-2-en-2- yltrifluoroborate (Sigma Aldrich, 31 g, 191 mmol), tricyclohexyiphosphine (8.5 g, 30.2 mmol), and Pd2(dba)3 (13.82 g, 15.09 mmol) were added to a flask which was then degassed and backfilled with nitrogen. To the flask was added 1 ,4-dioxane (252 mL) and aqueous potassium phosphate tribasic (37.5 mL, 453 mmol). The resulting reaction was heated at 100C for 16 h. The reaction was then cooled to RT. The residue was filtered through a plug of silica gel and then loaded onto silica gel (0-20% EtOAc in heptanes) to afford (E)-2-(but-2-en-2-yl)-5-methylpyrimidine, Example 371.01 (19 g, 125 mmol), in 83% yield.
In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles. 22536-61-4, 2-Chloro-5-methylpyrimidine, other downstream synthetic routes, hurry up and to see.
Reference:
Patent; AMGEN INC.; BROWN, Matthew; CHEN, Ning; CHEN, Xiaoqi; CHEN, Yinhong; CHENG, Alan C.; CONNORS, Richard V.; DEIGNAN, Jeffrey; DRANSFIELD, Paul John; DU, Xiaohui; FU, Zice; HARVEY, James S.; HEATH, Julie Anne; HEUMANN, Lars V.; HOUZE, Jonathan; KAYSER, Frank; KHAKOO, Aarif Yusuf; KOPECKY, David J.; LAI, Su-Jen; MA, Zhihua; MEDINA, Julio C.; MIHALIC, Jeffrey T.; OLSON, Steven H.; PATTAROPONG, Vatee; SWAMINATH, Gayathri; WANG, Xiaodong; WANSKA, Malgorzata; YEH, Wen-Chen; (815 pag.)WO2018/97944; (2018); A1;,
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia