Extracurricular laboratory: Synthetic route of 148-51-6

There is still a lot of research devoted to this compound(SMILES:OC1=C(C)C(CO)=CN=C1C.[H]Cl)Name: 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride, and with the development of science, more effects of this compound(148-51-6) can be discovered.

The preparation of ester heterocycles mostly uses heteroatoms as nucleophilic sites, which are achieved by intramolecular substitution or addition reactions. Compound: 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride( cas:148-51-6 ) is researched.Name: 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride.Singh, R. P.; Korytnyk, W. published the article 《Pyridoxine chemistry. VII. Some modifications in the 4-position of pyridoxol》 about this compound( cas:148-51-6 ) in Journal of Medicinal Chemistry. Keywords: ANTIMETABOLITES; CHEMISTRY, PHARMACEUTICAL; EXPERIMENTAL LAB STUDY; PHARMACOLOGY; PYRIDINES; PYRIDOXINE; SACCHAROMYCES. Let’s learn more about this compound (cas:148-51-6).

cf. preceding abstract Derivatives of I were prepared by treatment of 2,2,8-trimethyl-4H-m-dioxino[4,5-c]pyridine-5-methanol benzoate with HCl. I (R = OH) refluxed with SOCl2 and the residue treated with EtOH produced I (R = Cl). The catalytic (C) hydrogenation of I (R = Cl) afforded I (R = H). I (R = H) refluxed in KOH gave 4-deoxypyridoxine (II). I (R = Cl) stirred with Na2S2O5 produced I (R = SO3H). KCNS refluxed with I (R = Cl) gave I (R = SCN). Similarly, I (R = Cl) stirred with NaHS gave I (R = SH). I (R = H) was as active and I (R = SO3H) one-half as active as II in depressing lymphocyte count in rats fed a pyridoxine deficient diet, while the other reported derivatives were inactive. None of the other compounds inhibited the growth of Saccharomyces carlsbergensis. Cf. Schmidt, and Giesselmann, CA 58, 1429d.

There is still a lot of research devoted to this compound(SMILES:OC1=C(C)C(CO)=CN=C1C.[H]Cl)Name: 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride, and with the development of science, more effects of this compound(148-51-6) can be discovered.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Flexible application of in synthetic route 148-51-6

There is still a lot of research devoted to this compound(SMILES:OC1=C(C)C(CO)=CN=C1C.[H]Cl)Name: 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride, and with the development of science, more effects of this compound(148-51-6) can be discovered.

Patzer, Emmons M.; Hilker, Doris M. published an article about the compound: 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride( cas:148-51-6,SMILESS:OC1=C(C)C(CO)=CN=C1C.[H]Cl ).Name: 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride. Aromatic heterocyclic compounds can be classified according to the number of heteroatoms or the size of the ring. The authors also want to convey more information about this compound (cas:148-51-6) through the article.

Gas-chromatog. separation of 4 vitamin B6 derivatives consisted of converting them into hemiacetals with EtOH, refluxing at 125° for 15 min, evaporating the excess EtOH at 70° under N, and adding the new reagent N-methylbistrifluoroacetamide [685-27-8], followed by refluxing at 125° for 20 min and injecting the samples onto a column packed with 5% silicone oil on Chromosorb P and using flame ionization detection. The compounds derivatized were pyridoxine-HCl (I) [58-56-0], pyridoxamine-di-HCl [524-36-7], deoxypyridoxine-HCl [148-51-6] and pyridoxal-HCl [65-22-5]. The min. detectable amount is ∼250 ng. The procedure is rapid, clean, and simple.

There is still a lot of research devoted to this compound(SMILES:OC1=C(C)C(CO)=CN=C1C.[H]Cl)Name: 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride, and with the development of science, more effects of this compound(148-51-6) can be discovered.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Simple exploration of 148-51-6

There is still a lot of research devoted to this compound(SMILES:OC1=C(C)C(CO)=CN=C1C.[H]Cl)Quality Control of 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride, and with the development of science, more effects of this compound(148-51-6) can be discovered.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Biological radiation protection. LIX. The meaning of radiation-caused changes in the content of metabolites to the survival rate of mice》. Authors are Melching, Hans Joachim; Abe, Mitsuyuki; Streffer, Christian.The article about the compound:5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloridecas:148-51-6,SMILESS:OC1=C(C)C(CO)=CN=C1C.[H]Cl).Quality Control of 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride. Through the article, more information about this compound (cas:148-51-6) is conveyed.

After radiation, changes occur in albumin metabolism, especially in the case of tryptophan and cysteine. The changes reflect a curbing of the activity of amino acid decarboxylase with pyridoxal 5-phosphate as coenzyme. The following compounds increased the mortality rate when given with an x-ray dose of 505 r. (L.D.16/30): 4-deoxypyridoxine-HCl, isonicotinic acid hydrazide,DL-tryptophan, DL-kynurenine, and L-kynurenine. Taurine, given with 590 r. (L.D.64/30), increased the survival rate.

There is still a lot of research devoted to this compound(SMILES:OC1=C(C)C(CO)=CN=C1C.[H]Cl)Quality Control of 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride, and with the development of science, more effects of this compound(148-51-6) can be discovered.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Machine Learning in Chemistry about 148-51-6

There is still a lot of research devoted to this compound(SMILES:OC1=C(C)C(CO)=CN=C1C.[H]Cl)Reference of 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride, and with the development of science, more effects of this compound(148-51-6) can be discovered.

In organic chemistry, atoms other than carbon and hydrogen are generally referred to as heteroatoms. The most common heteroatoms are nitrogen, oxygen and sulfur. Now I present to you an article called Compounds affecting the development of housefly larvae, published in 1963, which mentions a compound: 148-51-6, mainly applied to , Reference of 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride.

Larval medium (50 g.) was saturated with 100 ml. of water containing 0.5-0.1 g. of the compound and 100 housefly eggs added. After 4 days it was examined for larvae and 3 days later for pupae. Emerging flies laid their eggs on untreated medium after 7 days. A sample of eggs remained in the medium, which was examined for larvae. The flies of this generation were reared to the adult stage. Compounds (245) are listed which are larvicides at 0.5 g. but not at 0.1 g. dosage; 64 compounds are larvicides at a dosage of ≤0.1 g.; 19 cause mortality in the pupal stage. 1,4-Bis(3-hydroxypropionyl)piperazine dimethanesulfonate causes low oviposition or failure of eggs to hatch at 0.05 and 0.025%, low enough to permit some adult emergence.

There is still a lot of research devoted to this compound(SMILES:OC1=C(C)C(CO)=CN=C1C.[H]Cl)Reference of 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride, and with the development of science, more effects of this compound(148-51-6) can be discovered.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Chemical Properties and Facts of 1260667-65-9

There is still a lot of research devoted to this compound(SMILES:NC1=NC=C(Cl)C(I)=C1)Electric Literature of C5H4ClIN2, and with the development of science, more effects of this compound(1260667-65-9) can be discovered.

Epoxy compounds usually have stronger nucleophilic ability, because the alkyl group on the oxygen atom makes the bond angle smaller, which makes the lone pair of electrons react more dissimilarly with the electron-deficient system. Compound: 5-Chloro-4-iodopyridin-2-amine, is researched, Molecular C5H4ClIN2, CAS is 1260667-65-9, about From Milligram to Kilogram Manufacture of AZD4573: Making It Possible by Application of Enzyme-, Iridium-, and Palladium-Catalyzed Key Transformations.Electric Literature of C5H4ClIN2.

With the first generation medicinal chem. synthesis as a starting point, herein process development of AZD4573, an oncol. drug candidate was described. In addition to improved yields and removal of chromatog. steps, other factors such as availability of starting materials as well as safety of the chem. involved were addressed. With several steps involving volatile, reactive, and non-UV active materials, reaction optimization was facilitated by implementing off-line 1H NMR anal. of crude mixtures Key transformations targeted for process development included a Wolff-Kishner reduction, an iridium-catalyzed borylation, and enzymic resolution of a racemic amino-ester.

There is still a lot of research devoted to this compound(SMILES:NC1=NC=C(Cl)C(I)=C1)Electric Literature of C5H4ClIN2, and with the development of science, more effects of this compound(1260667-65-9) can be discovered.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Chemical Properties and Facts of 148-51-6

There is still a lot of research devoted to this compound(SMILES:OC1=C(C)C(CO)=CN=C1C.[H]Cl)Quality Control of 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride, and with the development of science, more effects of this compound(148-51-6) can be discovered.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Synthetical and natural phellandrene》. Authors are Kondakoff, Iwan; Schindelmeiser, Iwan.The article about the compound:5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloridecas:148-51-6,SMILESS:OC1=C(C)C(CO)=CN=C1C.[H]Cl).Quality Control of 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride. Through the article, more information about this compound (cas:148-51-6) is conveyed.

Compare Abstract, 1903, i, 845. tert.-Carvomenthyl chloride, obtained from tert.-carvomenthol, boils at 83.5-84.5° under 12 mm. pressure, has a sp. gr. 0.932 at 20°/4°, and forms tert.-carvomenthene, which boils at 174-176°, has a sp. gr. 0.811 at 20°/4°, and nD 1.45709. On treatment with bromine in strongly cooled light petroleum solution, this yields carvomenthene dibromide, which boils between 130° and 144° under 11 mm. pressure, has a sp. gr. 1.208 at 20°/4°, is optically inactive, and by alcoholic potassium hydroxide is converted into a hydrocarbon or mixture of hydrocarbons which must have the constitution (the original abstract includes an equation). This distils in two fractions: the larger boils at 175-180°, has a sp. gr. 0.825 at 20°/4°, and nD 1.46693; the smaller boils at 180-185°, has a sp. gr. 0.828 at 20°/4°, and nD 1.4673. The hydrocarbon is not identical therefore with natural phellandrene. Both fractions are optically inactive and give a red coloration with sulphuric acid in acetic acid solution. A specimen of phellandrene from Phellandrum aquaticum, which boils at 165-168°, has a sp. gr. 0.844 at 20°/4°, nD 1.47575, and [α]D +8°37′ at 20°, reacts with hydrochloric acid in acetic acid solution to form a dextrorotatory chloro-derivative, C10H17Cl, which melts at 110° and boils at 86° under 11 mm. pressure, and a dichloride, C10H18Cl2, which boils at 122.5-125° under 16 mm. pressure, and has a sp. gr. 1.006 at 20°/4° and nD 1.48516 at 20° (compare Pesci, Abstract, 1886, 1038).

There is still a lot of research devoted to this compound(SMILES:OC1=C(C)C(CO)=CN=C1C.[H]Cl)Quality Control of 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride, and with the development of science, more effects of this compound(148-51-6) can be discovered.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

A new application about 120099-61-8

There is still a lot of research devoted to this compound(SMILES:CO[C@@H]1CNCC1)Product Details of 120099-61-8, and with the development of science, more effects of this compound(120099-61-8) can be discovered.

Product Details of 120099-61-8. The fused heterocycle is formed by combining a benzene ring with a single heterocycle, or two or more single heterocycles. Compound: (S)-3-Methoxypyrrolidine, is researched, Molecular C5H11NO, CAS is 120099-61-8, about Ultrapotent vinblastines in which added molecular complexity further disrupts the target tubulin dimer-dimer interface. Author is Carney, Daniel W.; Lukesh, John C. III; Brody, Daniel M.; Brutsch, Manuela M.; Boger, Dale L..

Approaches to improving the biol. properties of natural products typically strive to modify their structures to identify the essential pharmacophore, or make functional group changes to improve biol. target affinity or functional activity, change phys. properties, enhance stability, or introduce conformational constraints. Aside from accessible semisynthetic modifications of existing functional groups, rarely does one consider using chem. synthesis to add mol. complexity to the natural product. In part, this may be attributed to the added challenge intrinsic in the synthesis of an even more complex compound Herein, we report synthetically derived, structurally more complex vinblastines inaccessible from the natural product itself that are a stunning 100-fold more active (IC50 values, 50-75 pM vs. 7 nM; HCT116), and that are now accessible because of advances in the total synthesis of the natural product. The newly discovered ultrapotent vinblastines, which may look highly unusual upon first inspection, bind tubulin with much higher affinity and likely further disrupt the tubulin head-to-tail α/β dimer-dimer interaction by virtue of the strategic placement of an added conformationally well-defined, rigid, and extended C20′ urea along the adjacent continuing protein-protein interface. In this case, the added mol. complexity was used to markedly enhance target binding and functional biol. activity (100-fold), and likely represents a general approach to improving the properties of other natural products targeting a protein-protein interaction.

There is still a lot of research devoted to this compound(SMILES:CO[C@@H]1CNCC1)Product Details of 120099-61-8, and with the development of science, more effects of this compound(120099-61-8) can be discovered.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Introduction of a new synthetic route about 148-51-6

There is still a lot of research devoted to this compound(SMILES:OC1=C(C)C(CO)=CN=C1C.[H]Cl)Category: pyrimidines, and with the development of science, more effects of this compound(148-51-6) can be discovered.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Synthesis of vitamin B6 derivatives. Catalytic reduction of hydroxymethyl group substituted in pyridine ring》. Authors are Naito, Takeo; Ueno, Katsujiro.The article about the compound:5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloridecas:148-51-6,SMILESS:OC1=C(C)C(CO)=CN=C1C.[H]Cl).Category: pyrimidines. Through the article, more information about this compound (cas:148-51-6) is conveyed.

Catalytic reduction of 1.64 g. pyridoxine triacetate-HCl in 32 mL. H2O with 1 g. 10% Pd-C 1.5 h. at normal pressure of H absorbed 240 mL. H and gave 0.7 g. 3,4,6,5-Me3(OH)C5HN.HCl (I), m. 209-12°. Similarly, pyridoxine 4-Et ether HCl salt yielded 52% I, m. 210-12°. The above reaction with 1 mol absorption of H yielded 18% 4,6,3,5-Me2(HOCH2)(HO)C5HN.HCl (II), m. 250° (decomposition), and the mother liquor yielded 31% 3,6,4,5-Me2(EtOCH2)(HO)C5HN.HCl; picrate m. 138°. Catalytic reduction of 0.56 g. 6,3,4,5-Me(AcOCH2)(EtOCH2)(HO)C5HN.HCl in 20 mL. MeOH with 0.8 g. 10% Pd-C showed no absorption of H, the reduction proceeded well by addition of 20 mL. H2O and absorbed 54 mL. H in 2 h., and the product in 10% HCl heated 30 min. at 100° yielded 48.8% 3,6,4,5-Me2(EtOCH2)(HO)C5HN; picrate, m. 138°. Catalytic reduction of 3.76 g. pyridoxal oxime-HCl in 170 mL. H2O and 88 mL. 10% HCl with 4.8 g. 10% Pd-C absorbed 3050 mL. H in 20 h. and yielded 62% 3,6,4,5-Me2(HCl.H2NCH2)(HO)C5HN.HCl (III), m. 262-3° (decomposition); diacetate, C12H16O3N2, m. 176-7°; ditosylate-HCl, m. 194-5°. Catalytic reduction of 0.29 g. 6,3,4,5-Me(AcOCH2)(AcNHCH2)(AcO)C5HN in 8 mL. MeOH and 2.2 mL. 10% HCl-MeOH showed no absorption H but an addition of 10 mL. H2O absorbed 28 mL. H in 2 h. and yielded 100% diacetate of III, m. 174°. Similarly, 0.51 g. pyridoxal-HCl in 20 mL. H2O and 0.5 g. 10% Pd-C yielded 30% II, m. 246-8°. Catalytic reduction of 0.58 g. pyridoxal Et hemiacetal-HCl (IV) in 20 mL. EtOH and 0.5 g. 10% Pd-C (1 mol H absorbed) yielded 79% 6,5,3,4-Me(HO)(CH2OCH2)C5HN.HCl (V), m. 233-4°; picrate m. 186-7°. Similarly, 0.58 g. IV, 20 mL. H2O and 0.5 g. Pd-C yielded 40% II, m. 248-50°; 0.58 g. IV, 20 mL. HCl, 2.7 mL. 10% HCl and 0.5 g. Pd-C yielded 68% V, m. 225-30°. Catalytic reduction of 1.09 g. 2-HOCH2C5H4 N in 15 mL. MeOH and 51 mL. 5% HCl-MeOH with 1 g. Pd-C (260 mL. H absorbed in 2 h.) yielded 90% 2-MeC5H4N (VI); picrate m. 164-5°. Similarly, 1.23 g. 2-MeOCH2C5H4N in 15 mL. MeOH and 51 mL. 5% HCl-MeOH with 0.1 g. Pd-C (255 mL. H absorbed) yielded 91% 2-MeC5H4N; or, 2-AcOCH2C5H4N, in a similar way, yielded 88% 2-MeC5H4N. 2-HOCH2C5H4N.HCl (8 g.) added dropwise into 40 g. SOCl2 with cooling, refluxed 2 h., cooled, 100 mL. C6H6 added and the product filtered off gave 8.8 g. 2-ClCH2C5H4N (VII); picrate m. 146-7°. MeONa (2.72 g. Na and 55 mL. MeOH) treated dropwise with VII in 20 mL. MeOH, refluxed 1 h., the solvent removed and the residue extracted with Et2O gave 4.7 g. 2-MeOCH2C5H4N, b18 76-8°. Similarly are prepared (product, b.p./mm. and m.p. picrate given): 3-MeOCH2C5H4N, 92-4°/20, 117-18°; 4-MeOCH2C5H4N, 91-2°/19, 108-9°.

There is still a lot of research devoted to this compound(SMILES:OC1=C(C)C(CO)=CN=C1C.[H]Cl)Category: pyrimidines, and with the development of science, more effects of this compound(148-51-6) can be discovered.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Chemistry Milestones Of 591-12-8

There is still a lot of research devoted to this compound(SMILES:O=C1OC(C)=CC1)Electric Literature of C5H6O2, and with the development of science, more effects of this compound(591-12-8) can be discovered.

Electric Literature of C5H6O2. The mechanism of aromatic electrophilic substitution of aromatic heterocycles is consistent with that of benzene. Compound: 5-Methylfuran-2(3H)-one, is researched, Molecular C5H6O2, CAS is 591-12-8, about Photochemistry of 2-butenedial and 4-oxo-2-pentenal under atmospheric boundary layer conditions. Author is Newland, Mike J.; Rea, Gerard J.; Thuner, Lars P.; Henderson, Alistair P.; Golding, Bernard T.; Rickard, Andrew R.; Barnes, Ian; Wenger, John.

Unsaturated 1,4-dicarbonyl compounds, such as 2-butenedial and 4-oxo-2-pentenal are produced in the atm. boundary layer from the oxidation of aromatic compounds and furans. These species are expected to undergo rapid photochem. processing, affecting atm. composition In this study, the photochem. of (E)-2-butenedial and both E and Z isomers of 4-oxo-2-pentenal was investigated under natural sunlight conditions at the large outdoor atm. simulation chamber EUPHORE. Photochem. loss rates, relative to j(NO2), are determined to be j((E)-2-butenedial)/j(NO2) = 0.14 (±0.02), j((E)-4-oxo-2-pentenal)/j(NO2) = 0.18 (±0.01), and j((Z)-4-oxo-2-pentenal)/j(NO2) = 0.20 (±0.03). The major products detected for both species are a furanone (30-42%) and, for (E)-2-butenedial, maleic anhydride (2,5-furandione) (12-14%). The mechanism appears to proceed predominantly via photoisomerization to a ketene-enol species following γ-H abstraction. The lifetimes of the ketene-enol species in the dark from 2-butenedial and 4-oxo-2-pentenal are determined to be 465 s and 235 s, resp. The ketene-enol can undergo ring closure to yield the corresponding furanone, or further unimol. rearrangement which can subsequently form maleic anhydride. A minor channel (10-15%) also appears to form CO directly. This is presumed to be via a mol. elimination route of an initial biradical intermediate formed in photolysis, with an unsaturated carbonyl (detected here but not quantified) as co-product. α-Dicarbonyl and radical yields are very low, which has implications for ozone production from the photo-oxidation of unsaturated 1,4-dicarbonyls in the boundary layer. Photochem. removal is determined to be the major loss process for these species in the boundary layer with lifetimes of the order of 10-15 min, compared to >3 h for reaction with OH.

There is still a lot of research devoted to this compound(SMILES:O=C1OC(C)=CC1)Electric Literature of C5H6O2, and with the development of science, more effects of this compound(591-12-8) can be discovered.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Little discovery in the laboratory: a new route for 65090-78-0

There is still a lot of research devoted to this compound(SMILES:O=C(O)C(Br)COC)Recommanded Product: 65090-78-0, and with the development of science, more effects of this compound(65090-78-0) can be discovered.

The chemical properties of alicyclic heterocycles are similar to those of the corresponding chain compounds. Compound: 2-Bromo-3-methoxypropanoic acid, is researched, Molecular C4H7BrO3, CAS is 65090-78-0, about New and alternate synthesis of lacosamide with chemoenzymatic method, the main research direction is enzymic resolution racemic lacosamide; lacosamide enantiopure preparation.Recommanded Product: 65090-78-0.

Lacosamide [(R)-2-acetamido-N-benzyl-3-methoxy propionamide] 5 is a novel antiepileptic drug. Lacosamide was prepared by a chem. method with enzymic resolution of racemic lacosamide. Herein is reported an expedient four-steps enantioselective synthesis of lacosamide 5 beginning with Me 2,3-dibromo propionate 1. A new resolution process catalyzed by Novozyme 435. The products were obtained in very good yields and in a state of high purity. All the newly synthesized compounds (2-5) were characterized by their spectral (IR, 1H NMR, C13 NMR and MS) data.

There is still a lot of research devoted to this compound(SMILES:O=C(O)C(Br)COC)Recommanded Product: 65090-78-0, and with the development of science, more effects of this compound(65090-78-0) can be discovered.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia