Awesome Chemistry Experiments For 148-51-6

If you want to learn more about this compound(5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride)Quality Control of 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(148-51-6).

Serwa, Remigiusz; Nam, Tae-gyu; Valgimigli, Luca; Culbertson, Sean; Rector, Christopher L.; Jeong, Byeong-Seon; Pratt, Derek A.; Porter, Ned A. published the article 《Preparation and Investigation of Vitamin B6-Derived Aminopyridinol Antioxidants》. Keywords: aminopyridinol preparation antioxidant.They researched the compound: 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride( cas:148-51-6 ).Quality Control of 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride. Aromatic heterocyclic compounds can be divided into two categories: single heterocyclic and fused heterocyclic. In addition, there is a lot of other information about this compound (cas:148-51-6) here.

3-Pyridinols bearing amine substitution para to the hydroxylic moiety have previously been shown to inhibit lipid peroxidation more effectively than typical phenolic antioxidants, for example, α-tocopherol. We report here high-yielding, large-scale syntheses of mono- and bicyclic aminopyridinols from pyridoxine hydrochloride (i.e., vitamin B6). This approach provides straightforward, scaleable access to novel, potent, mol. scaffolds whose antioxidant properties have been investigated in homogeneous solutions and in liposomal vesicles. These mol. aggregates mimic cell membranes that are the targets of oxidative damage in vivo.

If you want to learn more about this compound(5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride)Quality Control of 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(148-51-6).

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

The Absolute Best Science Experiment for 18436-73-2

If you want to learn more about this compound(4-Chloro-8-methylquinoline)SDS of cas: 18436-73-2, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(18436-73-2).

In general, if the atoms that make up the ring contain heteroatoms, such rings become heterocycles, and organic compounds containing heterocycles are called heterocyclic compounds. An article called Aminoalkylphenols as antimalarials. II. (Heterocyclic amino)-α-amino-ο-cresols. The synthesis of camoquin, published in 1948, which mentions a compound: 18436-73-2, Name is 4-Chloro-8-methylquinoline, Molecular C10H8ClN, SDS of cas: 18436-73-2.

In view of the high antimalarial activity of certain substituted α-amino-ο-cresols, earlier work (C.A. 41, 414d) has been extended to analogs containing heterocyclic nuclei. This reports the preparation of a group of 122 (heterocyclic amino)-α-amino-ο-cresols and a related group of 12 (heterocyclic amino)benzylamines, as well as the new intermediates used therein. This work has resulted in the preparation of a promising antimalarial (SN 10,751) named camoquin, as well as other compounds which are the most active 4-aminoquinoline derivatives heretofore reported in trophozoite-induced Plasmodium gallinaceum infection in the chick. Catalytic reduction of the appropriate nitrophenol in the presence of Ac2O gave these 4-acetamidophenols: 2-Cl, m. 144°, 55% yield; 2-Ph, m. 160°, 60%; and 2-acetamidophenols: 4-Cl, m. 186°, 52%; 4-Ph, m. 165°, 89%; and 4-tert-Bu, m. 170°, 79%. 2-Allyl-4-acetamidophenol, m. 93-4°, was obtained in 83% yield from the rearrangement of 4-CH2:CHCH2OC6H4NHAc. The Mannich reaction on the substituted acetamidophenols gave these 4-acetamido-α-substituted-ο-cresols: diethylamino (I), m. 135°, 82%; dibutylamino, m. 73°, 87% (picrate, m. 183-5°); dibenzylamino, m. 230°, 75%; (2-methyl-1-piperidyl) (HCl.H2O, m. 175°, 65%); 4-morpholinyl, m. 133°, 27%; [methyl(2-hydroxyethyl)amino] (HCl, m. 198°, 50%); (2-butylamino), m. 156°, 37%; (2-hydroxyethylamino) (HCl, m. 230°, 31%); the 6-allyl derivative of I, m. 86°, 58%: the 5-acetamido isomer of I (HCl, m. 210°, 33%); and these 6-acetamido-α-diethylamino-4-substituted-ο-cresols: Cl (HCl, m. 212°, 66%); tert-Bu (HCl, m. 158°, 53%); and Ph (HCl, m. 183°). Acid hydrolysis of the appropriate 4-acetamido compound gave these 4-amino-α-substituted-ο-cresols (di-HCl salts) (all m. with decomposition); diethylamino, SN 12,458, m. 218-20°, 96%; 1-piperidyl, m. 153-5°, 91%; and 4-morpholinyl, m. 259-60°, 45%. The Mannich reaction on 4-nitrophenol (A) and the reaction of the amine on 2-(chloromethyl)-4-nitrophenol (B) were used to prepare these α-substituted-4-nitro-ο-cresol HCl salts (all m. with decomposition): diethylamino, A, m. 224°, 40%; diisopropylamino, B, m. 193°, 19%; dibutylamino, B, m. 176°, 75%; diisobutylamino (free base), B, m. 113°, 43%; diisoamylamino, B, m. 132°, 32%; isopropylamino, B, m. 238°, 38%; isobutylamino, B, m. 247°, 29%; tertbutylamino, B, m. 275°, 20%; 1-piperidyl, A, m. 260°, 68%; and α-diethylamino-4-nitro-6-phenyl-ο-cresol, A, m. 125°, 21%; and 4-tert-butyl-α-diethylamino-6-nitro-ο-cresol, A, m. 103°, 50%. The method of Price and Roberts (C.A. 40, 5739.5) was used to prepare these substituted 4-chloroquinolines: 6-Me, m. 55°, 50%; 6-anilino, m. 148°, 6%; 7-EtO, m. 76°, 53%; 7-hexyloxy, a high-boiling liquid, 41%; 8-Me, m. 99°, 71%; 5,7-di-Me, m. 59°, 51%; 5,8-di-Me, m. 51°, 59%; 5-chloro-8-methoxy, m. 127°, 6%; 5-methyl-8-methoxy, m. 78°, 45%; 6,8-di-Me, m. 90°, 82%; and 6,7,8-trichloro, m. 156°, 39%. The (heterocyclic amino)-α-alkylamino-ο-cresols were prepared by minor variations of the general procedure of heating the chloroheterocycle with the amino-α-alkylamino-ο-cresols in aqueous or alc. solution on the steam bath. The latter were obtained either by acid hydrolysis of the acetamido derivatives or by catalytic reduction of the nitro derivatives and were usually condensed without isolation. The products are isolated either as the free bases or HCl salts. All the quinine equivalents (Q) reported here are based on the B4 test using P. gallinaceum in the chick. Nearly all the HCl salts m. with decomposition and are colored yellow to orange. 4-(4-Quinolylamino)-α-diethylamino-ο-cresol (II) di-HCl, SN 12,452, m. above 300°, was obtained in 48% yield and had a quinine equivalent of 3 (designated hereafter in the form Q 3). Analogs of II, substituted on the quinoline nucleus: 2-Cl (2HCl, SN 11,986, m. 248°, 30%, Q <0.07); 3-Ph, SN 11,631, m. 155°, 31%, Q 0.4; 6-MeO (2HCl, SN 10,274, m. 270°, 75%, Q 8); 6-Cl (HCl.0.5H2O, SN 11,597, m. 220°, 60%, Q 3.0); 6-Me, SN 11,559, m. 172° (2HCl, m. 238°, 56%, Q 4); 6-anilino (2HCl.H2O, SN 12,361, m. 196°, 63%, Q 0.2); 6-dimethylamino (3HCl.0.5H2O, SN 11,984, m. 235°, 73%, Q 2.5); 6-nitro (2HCl.1.5H2O, m. 210°, 63%, Q 0.8); 7-MeO (2HCl.0.5H2O, SN 11,554, m. 210°, 43%, Q 7); 7-EtO (2HCl.2H2O, SN 11,281, m. 136°, 44%, Q 7); (7-hexyloxy, SN 11,634, m. 153°, 35%, Q 0.5; Q 7); 7-Me (2HCl, SN 12,699, m. 245°, 93%, Q 9); 7-Cl (camoquin) SN 10,751, m. 208°, 86%, Q 25 (2HCl.0.5H2O, m. 243°); 2HCl.H2O, m. 183°; (2HCl.2H2O, m. 160°, 90%); 8-Cl, SN 11,551, m. 212° (2HCl.0.5H2O, m. 253°, 79%, Q 0.5); 8-MeO (2HCl.1.5H2O, SN 11,594, m. 241°, 50%, Q 0.8); 8-Me (2HCl.H2O, SN 11,601, m. 253°, 66%, Q 0.7); 5-chloro-3-Me (2HCl, SN 11,985, m. 258°, 48%, Q 0.3); 5,7-di-Cl (2HCl, SN 12,700, m. 200°, 65%, Q 3); 5,7-di-Me (2HCl, SN 11,561, m. 242°, 67%, Q 10); 5,8-di-Cl (2HCl.H2O, SN 11,596, m. 235°, 60%, Q 0.25); 5,8-di-Me (2HCl, SN 11,560, m. 249°, 80%, Q 0.6); 5-chloro-8-methoxy [2HCl, SN 12,162,(incorrectly given as 12,161 in original), m. 231°, 80%, Q 0.4]; 6-methoxy-2-Me (2HCl, SN 9223, m. 278°, 45%, Q 1.2); 6-methoxy-2-Ph (2HCl.1.75H2O, SN 11,592, m. 198°, 61%, Q 0.25); 6,7-di-Cl (2HCl, SN 12,161, m. 257°, 71.5%, Q 5); 6,7-di-MeO (2HCl, SN 13,395, m. 258°, 68%, Q 2.5); 6,7-di-Me, SN 11,990, m. 215°, 49%, Q 6; 6,8-di-Me (2HCl.H2O, SN 11,558, m. 264°, 54%, Q 0.6); 7-chloro-2-Ph (2HCl, SN 11,232, m. 260°, 41%, Q 0.3); 7-chloro-3-Ph, SN 12,228, m. 165°, Q 1; 7-chloro-3-Me (2HCl, SN 10,492, m. 260°, 64%, Q 6); 8-methoxy-5-Me (2HCl, SN 11,632, m. 210°, 90%, Q 0.6); 6,7,8-tri-Cl (2HCl, SN 11,633, m. 277°, 40%, Q <0.3); and 6-HO (2HCl, SN 11,563, m. 262°, 64%, Q 0.2) (prepared by HBr demethylation of the 6-MeO derivative). 4-(6-Methoxy-4-quinolylamino)-α-dibutylamino-ο-cresol (III) (2HCl.1.25H2O, m. 193°, 10%, Q 9); the (7-chloro-3-methyl-4-quinolylamino) analog of III (2HCl.1.5H2O, m. 177°, 43%, Q 10). 4-(6-Methoxy-4-quinolylamino)-α-1-piperidyl-ο-cresol (IV) (2HCl.0.5H2O, SN 12,038, m. 270°, 80%, Q 8); analogs of IV: (6,7-dimethoxy-4-quinolylamino) (2HCl, SN 13,413, m. 230°, 40%, Q 4); (7-chloro-3-methyl-4-quinolylamino) (2HCl, SN 12,360, m. 270°, 47%, Q 2); (6-methyl-4-quinolylamino) (2HCl, SN 12,456, m. 240°, 41%, Q 2.5). 4-(6-Methoxy-4-quinolylamino)-α-4-morpholinyl-ο-cresol (V) (2HCl, SN 11,989, m. 265°, 57%, Q 1); analogs of V: (7-chloro-3-methyl-4-quinolylamino) (2HCl, SN 12,362, m. 242°, 33%, Q 0.15); (6-methyl-4-quinolylamino), SN 12,457, m. 239°, 50%, Q 0.8. 5-(7-Chloro-4-quinolylamino)-α-diethylamino-ο-cresol, SN 13,730, m. 173°, Q 9; 6-(7-chloro-4-quinolylamino)-α-diethylamino-4-(diethylaminomethyl)-ο-cresol-1.5H2O, m. 145°, Q 5; 4-chloro-α-diethylamino-6-(6-methoxy-4-quinolylamino)-ο-cresol (2HCl, SN 12,885, m 205°, 50%, Q 0.5). 6-Chloro-4-(7-chloro-4-quinolylamino)-α-diethylamino-ο-cresol (VI), SN 13,729, m. 225°, Q 12; analogs of VI: 6-Ph (0.5H2O, m. 235°, 25%); 6-allyl, SN 11,991, m. 148°, 44%, Q 10; 6-allyl-α-1-piperidyl, SN 12,697, m. 190°, 32%, Q 4; 6-allyl-α-diallylamino, SN 13,394, m. 131°, 25%, Q 0.7. 6-Allyl-α-diethylamino-4-(6-methoxy-4-quinolylamino)-ο-cresol, SN 12,039, m. 161°, 33%, Q 7. Variations of the alkylamino group on the cresol portion of camoquin were studied: α-amino-4-(7-chloro-4-quinolylamino)-ο-cresol (VII) (2HCl.0.5H2O, SN 1603, m. 325°, 80%, Q 6); analogs of VII (substituents on the α-amino group): benzoyl (HCl, SN. 11,557, m. 289°, 80%, Q 0.15); Et (2HCl, m. 280°, Q 40, 4% conversion, prepared by the Mannich reaction of EtNH2, (HCHO)x, and 7-chloro-4-(4-hydroxyanilino)quinoline (HCl, m. above 320°, 94%)); Pr(2HCl.0.5H2O, m. 244°, 24%, Q 30); iso-Pr (2HCl, m. 287° 50%, Q 40); Bu (2HCl, m. 254°, 6%, Q 30); sec-Bu (2HCl.H2O, m. 252°, 3%, Q 50); iso-Bu (2HCl, m. 256°, 65%, Q 75); tert-Bu (2HCl, m. 285°, 36%, Q 40); Am (2HCl, m. 266°, 15%, Q 50); (1-methylbutyl 2HCl, m. 231°, 22%, Q 40); iso-Am (2HCl, m. 279°, 20%, Q 50); hexyl (2HCl, m. 280°, 56%, Q 25); (2-ethylbutyl (2HCl, m. 263°, 15%, Q 50)); heptyl (2HCl, m. 278°, 29%, Q 15); octyl, m. 150°, 15%, Q 2.5; allyl (2HCl, m. 257°, 3%, Q 20); 1-methylallyl (2HCl.1.75H2O, m. 95°); cyclohexyl (2HCl.0.25H2O, m. 252°, 30%, Q 30); 2-hydroxyethyl (2HCl.H2O, m. 182°, 15%, Q 3); 2-methoxyethyl (2HCl, m. 271°, Q 25); benzyl (2HCl, m. 270°, Q 16); (α-methylphenethyl) (2HCl.0.25H2O, m. 243°, 31%, Q 25); di-Me (2HCl, m. 290°, 85%, Q 6); N-ethyl-N-butyl(2HCl, m. 240°, 65%, Q 30); di-Pr, SN 13,835, m. 181°, 11%, Q 25; di-Bu, SN 14,105, m. 164°, 20%, Q 35; diiso-Bu (0.5H2O, m. 166°, 38%); diiso-Am (0.5H2O, m. 135°); dihexyl (2HCl, m. 220°, 40%, Q 0.5); diheptyl (2HCl, m. 203°, 52%, Q 1); dioctyl (2HCl, m. 192°, 46%, Q 0.2); bis(2-ethylhexyl) (2HCl.H2O, m. 154°, 1%, Q 3); methyl(2-hydroxyethyl) (2HCl, SN 12,363, m. 250°, 63%, Q 3); butyl(2-hydroxyethyl), SN 14,824, m. 149°, 22%, Q 12; bis(2-hydroxyethyl), m. 193°, 25%, Q 0.6; dibenzyl (2HCl, m. 235°, 74%, Q 2.5); N-methyl-N-Ph (H2O, m. 140°, 39%, Q 0.07); N-ethyl-N-Ph, m. 131°, 54%, Q <0.05. Further analogs of VII: α-1-piperidyl (2HCl.2.5H2O, SN 11,636, m. 302°, 77.5%, Q 25); α-(2-methyl-1-piperidyl) (2HCl, SN 12,357, m. 288°, 66%, Q 20); α-4-morpholinyl (2HCl, SN 11,987, m. 292°, 60-5%, Q 4). Compounds containing heterocyclic nuclei other than the 4-quinolyl include the following 4-(heterocyclic amino)-α-diethylamino-ο-cresols: 9-acridyl (2HCl, SN 12,356, m. 265°, 45%, Q 1.5); (3-chloro-9-acridyl) (2HCl, SN 12,355, m. 267°, 52%, Q 3); (4-methoxy-9-acridyl) (2HCl, SN 12,164, m. 245°, 50%, Q 0.15); (3-chloro-5-methyl-9-acridyl) (2HCl, SN 11,988, m. 275°, 40%, Q 0.25); 2-quinolyl (2HCl, SN 9559, m. 230°, 48%, Q 0.12); (6-methoxy-2-quinolyl) (2HCl, SN 11,537, m. 237°, 20.5%, Q 0.7); (5-nitro-2-quinolyl) (2HCl, SN 9307, m. 245°, 33%, Q <0.07); (2-amino-4-pyrimidyl) (2HCl, SN 9591, m. 258°, 41%, Q 1.1); [2-(1-piperidyl)-4-pyrimidyl], SN 10,177, m. 156°, 31%, Q 0.4; (2-amino-6-methyl-4-pyrimidyl) (2HCl, m. 245°, 55%); (4-methoxy-2-benzothiazolyl) (2HCl, SN 11,189, m. 163°, 47%, Q <0.07); (6-chloro-2-methoxy-9-acridyl) (VIII), SN 8617, m. 175°, 50% (H2O, m. 117°; 2HCl, m. 280°, 76%, Q 4; 2HCl.2H2O, m. 180°); analogs of VIII: α-(ethylbutylamino) (2HCl, m. 252°, 36%, Q 5); α-dibutylamino (2HCl, SN 11,599, m. 246°, 69%, Q 2.5); α-diallylamino, SN 13,163, m. 158°, 16%, Q 0.5; α-dihexylamino (2HCl, m. 254°, 23%, Q 0.4); α-dioctylamino (2HCl, m. 285°, 20%, Q <0.06); α-1-piperidylamino (2HCl, SN 11,536, m. 287°, Q 0.6); α-hexylamino (2HCl.H2O, m. 226°, 7%, Q 1); α-(2-hydroxyethylamino) (2HCl.H2O, SN 11,233, m. 284°, 90%, Q 0.2); α-benzamido (HCl.0.5H2O, SN 11,589, m. 294°, 95%, Q <0.04). 5-(6-Chloro-2-methoxy-9-acridylamino)-α-diethylamino-ο-cresol (2HCl.0.5H2O, SN 9614, m. 237°, 50%, Q 1); 4-tert-butyl-6-(6-chloro-2-methoxy-9-acridylamino)-α-diethylamino-ο-cresol (IX) (2HCl, SN 11,544, m. 271°, 98%, Q 0.6); 4-Ph analog of IX (2HCl, SN 11,553, m. 274°, 84%, Q 0.5); 4-diethylaminomethyl analog of IX (3HCl.H2O, SN 11,550, m. 257°, 73%, Q 2); 6-allyl-4-(6-chloro-2-methoxy-9-acridylamino)-α-diethylaminο-ο-cresol (X) (2HCl, SN 11,234, m. 233°, 65%, Q 3); α-diallylamino analog of X (2HCl.H2O, SN 13,399, m. 188°, 12%, Q 0.3); and α-1-piperidyl analog of X, SN 12,701, m. 164°, 44%, Q 2. A series of nitrobenzylamines was prepared by condensation of the nitrobenzyl chloride with the amine in absolute EtOH. During the course of this work, 2-(chloromethyl)-4-nitrophenetole,m. 72-5°, was obtained in 75% yield from the chloromethylation of 4-nitrophenetole. The nitrobenzylamines were reduced catalytically in absolute EtOH and the resulting aminobenzylamines without isolation were condensed with the chloroheterocycle. Thus were obtained: N,N-diethyl-3-nitrobenzylamine, b6 145-8°, 60%; 4-nitro isomer (XI) (HCl, m. 162°, 45%); analogs of XI: N,N-di-Pr (HCl, m. 138°, 68%); N-monoisopropyl (HCl, m. 232°, 82%); N-monoisobutyl (HCl, m. 214°, 64%). N,N-Diethyl-5-nitro-2-methoxybenzylamine (XII) (HCl, m. 178°, 72%); analogs of XII: N-monoisobutyl (HCl, m. 176°, 63%); N-monoamyl (HCl salt could not be separated from an impurity of AmNH2.HCl). N,N-Diethyl-5-nitro-2-ethoxybenzylamine (HCl, m. 182°, 56%). 3-(7-Chloro-4-quinolylamino)-N,N-diethylbenzylamine (2HCl.2H2O, SN 11,590, m. 128° (all these HCl salts m. with decomposition), 85%, Q 1); 4-(7-chloro-4-quinolylamino)-N,N-diethylbenzylamine (XIII) (2HCl, SN 12,455, m. 261°, Q 4); N,N-di-Pr analog of XIII (2HCl, m. 255°, 60%, Q 4); the N-monoisopropyl analog of XIII (2HCl salt, m. 303°, 23%, Q 10); N-monoisobutyl analog of XIII (2HCl.H2O, m. 288°, 76%); 5-(7-chloro-4-quinolylamino)-N,N-diethyl-2-methoxybenzylamine (XIV), m. 203°, 64%, Q 25; N-monoisobutyl analog of XIV (2HCl.0.25H2O, m. 194°, 76%, Q 17); N-monoamyl analog of XIV (2HCl, m. 288°, 42%, Q 15); 2-ethoxy analog of XIV (2HCl.2H2O, m. 247°, 73%, Q 8); 3-(6-chloro-2-methoxy-9-acridylamino)-N,N-diethylbenzylamine (XV) (2HCl.0.75H2O, SN 10,984, m. 278°, 55%, Q 0.5); the 4-substituted benzyl isomer of XV (2HCl.0.5H2O, SN 10,028, m. 260°, 92%, Q 0.4); and 5-(6-chloro-2-methoxy-9-acridylamino)-2-methoxy-N,N-diethylbenzylamine (2HCl.0.5H2O, m. 212°, 67%, Q 3). 6-Chloro-9-(4-hydroxyanilino)-2-methoxyacridine, m. 266° (decomposition) (HCl, orange, m. above 300°, prepared in 98% yield from p-NH2C6H4OH and 6,9-dichloro-2-methoxyacridine on the steam bath), failed to undergo the usual Mannich reaction. Failure of this reaction led to the development of the method of synthesis used for all of the heterocyclic derivatives reported in this paper. If you want to learn more about this compound(4-Chloro-8-methylquinoline)SDS of cas: 18436-73-2, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(18436-73-2).

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Properties and Exciting Facts About 148-51-6

If you want to learn more about this compound(5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride)Reference of 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(148-51-6).

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Synthesis of 2,4-dimethyl-3-hydroxy-5-hydroxymethylpyridine》. Authors are Balyakina, M. V.; Rubtsov, I. A.; Zhdanovich, E. S.; Preobrazhenskii, N. A..The article about the compound:5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloridecas:148-51-6,SMILESS:OC1=C(C)C(CO)=CN=C1C.[H]Cl).Reference of 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride. Through the article, more information about this compound (cas:148-51-6) is conveyed.

2,4-Dimethyl- 3 – hydroxy-5- hydroxymethylpyridine (4- deoxypyridoxine) (I) was synthesized via the following intermediates: 2,4-dimethyl-5-cyano-6-pyridone (II), 2,4-dimethyl-3-nitro-5-cyano-6-pyridone (III), and 2,4-dimethyl-3-nitro-5-cyano-6-chloropyridine (IV). Reduction of IV was carried out in 1 step in dilute HCl over Pd-C. 2,4-Dimethyl-3-amino-5-aminomethylpyridine was converted without isolation to I by treatment with NaNO2. Thus, 33 ml. NH4OH (d20 0.9) was added with stirring to 40 g. EtO2CCH2CN, the mixture cooled with ice to 0-2° and the precipitate filtered off, washed at 0° with 20 ml. cold EtOH, and dried to yield 23.8 g. cyanoacetamide (V), m. 120-2°. The filtrate was evaporated to dryness to yield an addnl. 3.95 g. Acetylacetone (10.0 g.) was added at 70° to 8.4 g. V in 50 ml. MeOH and 1.12 ml. Me2NH to precipitate 88.1% II, m. 293.1-4.2°. A suspension of 4.44 g. II in 15 ml. Ac2O is treated with stirring with 2.3 ml. HNO3 (d20 1.4) and 2.3 ml. Ac2O at 35-40°, and the mixture stirred 2 hrs. at 18-20° and poured upon 23 g. crushed ice, to precipitate 56.4% yellow III, m. 272.0-2.6° (alc.). P2O5 (5.3 g.) is added to a suspension of 3.6 g. III in 36 ml. PhCl, the mixture heated with stirring 3 hrs. at 118-120° the solvent removed at 45-50°/10 mm., the residue treated with 3.6 ml. absolute alc., stirred, and left 8 hrs. at 0-4°, the precipitate filtered off, washed at 0° with 2 ml. alc., and dried, and the residue extracted with petr. ether (b. 60-70°) to give 62.2% yellow IV, m. 114-15°. IV (2.4 g.) in 25 ml. ice water was added to a pre-hydrogenated mixture of 0.10 g. PdCl2 with H2O, HCl, and C, the hydrogenation continued until the theoretical H absorption, the catalyst separated and washed with 2 ml. H2O, 2.4 ml. HCl (d20 1.18) added to the solution and washings, and the solution heated 1.5 hrs. at 80-5° during which 1.6 g. NaNO2 in 5 ml. H2O was added, the heating continued 30 more min. (neg. starch-iodide test), the solution evaporated in vacuo, the residue extracted with absolute alc., the extracts treated with activated C and concentrated until the appearance of crystals, the mixture kept 8 hrs. at 0-4°, and the precipitate filtered off, washed at 0° with 1 ml. alc., and dried to give 42.2% I, m. 256.1-7.2°.

If you want to learn more about this compound(5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride)Reference of 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(148-51-6).

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

New downstream synthetic route of 591-12-8

If you want to learn more about this compound(5-Methylfuran-2(3H)-one)Safety of 5-Methylfuran-2(3H)-one, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(591-12-8).

Epoxy compounds usually have stronger nucleophilic ability, because the alkyl group on the oxygen atom makes the bond angle smaller, which makes the lone pair of electrons react more dissimilarly with the electron-deficient system. Compound: 5-Methylfuran-2(3H)-one, is researched, Molecular C5H6O2, CAS is 591-12-8, about Characterization of key aroma-active compounds in four commercial oyster sauce by SGC/GC x GC-O-MS, AEDA, and OAV.Safety of 5-Methylfuran-2(3H)-one.

Oyster sauce (OS) is a common seasoning in Asian countries. Here, four types of OS with different components and ingredients were characterized by the switchable GC/GC x GC-olfactometry-mass spectrometry (SGC/GC x GC-O-MS) and sensory evaluation. A total of 27 key aroma-active compounds were screened by FD factor and OAVs in OS. Of them, pyrazines were predominated, 2,5-dimethyl-3-ethylpyrazine had the highest OAV and FD factor. Sensory evaluation showed that the overall flavor profile of OS is primarily composed of nutty/roast, caramel/sweet, cooked potato-like, fruity, burnt, and unpleasant notes such as rancid, mushroom-like, and fishy. Moreover, soy sauce exhibited a great impact on OS aroma. The principal component anal. (PCA) results based on the OAV values of key aroma-active compounds were consistent with the sensory evaluation results, suggesting that PCA based on the above method could accurately cluster and distinguish the samples with different aroma profiles. The odor notes of burnt, fruity and caramel-like/sweet contributed to WDM and JC clustering. Similarly, roast/nutty, cooked potato-like, and unpleasant odor notes contributed to clustering of LKK and HT.

If you want to learn more about this compound(5-Methylfuran-2(3H)-one)Safety of 5-Methylfuran-2(3H)-one, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(591-12-8).

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

A small discovery about 591-12-8

If you want to learn more about this compound(5-Methylfuran-2(3H)-one)Recommanded Product: 5-Methylfuran-2(3H)-one, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(591-12-8).

Recommanded Product: 5-Methylfuran-2(3H)-one. Aromatic compounds can be divided into two categories: single heterocycles and fused heterocycles. Compound: 5-Methylfuran-2(3H)-one, is researched, Molecular C5H6O2, CAS is 591-12-8, about Rapid microwave-assisted polyol synthesis of TiO2-supported ruthenium catalysts for levulinic acid hydrogenation. Author is Howe, Alexander G. R.; Maunder, Rhodri; Morgan, David J.; Edwards, Jennifer K..

One wt% Ru/TiO2 catalysts prepared by a one-pot microwave-assisted polyol method have been shown to be highly active for Levulinic acid hydrogenation to γ-Valerolactone. Preparation temperature, microwave irradiation time and choice of Ru precursor were found to have a significant effect on catalyst activity. In the case of Ru(acac)3-derived catalysts, increasing temperature and longer irradiation times increased catalyst activity to a maximum LA conversion of 69%. Conversely, for catalysts prepared using RuCl3, shorter preparation times and lower temperatures yielded more active catalysts, with a maximum LA conversion of 67%. Catalysts prepared using either precursor were found to contain highly dispersed nanoparticles <3 nm in diameter XPS anal. of the most and least active catalysts shows that the catalyst surface is covered in a layer of insoluble carbon with surface concentrations exceeding 40% in some cases. This can be attributed to the formation of large condensation oligomers from the reaction between the solvent, ethylene glycol and its oxidation products, as evidenced by the presence of C-O and C = O functionality on the catalyst surface. If you want to learn more about this compound(5-Methylfuran-2(3H)-one)Recommanded Product: 5-Methylfuran-2(3H)-one, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(591-12-8).

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Discovery of 148-51-6

If you want to learn more about this compound(5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride)Quality Control of 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(148-51-6).

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Compounds affecting fertility in adult houseflies》. Authors are LaBrecque, G. C.; Gouck, H. K..The article about the compound:5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloridecas:148-51-6,SMILESS:OC1=C(C)C(CO)=CN=C1C.[H]Cl).Quality Control of 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride. Through the article, more information about this compound (cas:148-51-6) is conveyed.

Of 1100 compounds that were tested, 20 caused sterility in adult Musca domestica when given in the food. P,P-Bis(1-aziridinyl)-N-(p-methoxyphenyl)phosphinic amide, 5-fluoroorotic acid, and 1,4-piperazinediylbis[bis(1-aziridinyl)phosphinic oxide] induced sterility without apparent toxic effect over the broadest range of concentrations, from 5% to 0.1% or 0.25%.

If you want to learn more about this compound(5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride)Quality Control of 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(148-51-6).

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Awesome Chemistry Experiments For 591-12-8

If you want to learn more about this compound(5-Methylfuran-2(3H)-one)Name: 5-Methylfuran-2(3H)-one, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(591-12-8).

In general, if the atoms that make up the ring contain heteroatoms, such rings become heterocycles, and organic compounds containing heterocycles are called heterocyclic compounds. An article called Vapor-phase hydrogenation of levulinic acid to γ-valerolactone over Cu-Ni alloy catalysts, published in 2021-04-25, which mentions a compound: 591-12-8, Name is 5-Methylfuran-2(3H)-one, Molecular C5H6O2, Name: 5-Methylfuran-2(3H)-one.

Vapor-phase hydrogenation of levulinic acid (LA) to γ-valerolactone (GVL) was investigated over supported-type Cu-Ni/Al2O3 catalysts in H2 flow at 250°C. Ni-rich Cu-Ni/Al2O3 catalysts, typically 6 weight% Cu and 14 weight% Ni, achieved high LA conversion with high stability and high GVL selectivity. XRD analyses of the catalysts clarified that Cu-Ni alloy nanoparticles were produced on the alumina support by forming a solid solution of CuO-NiO. The Cu-Ni/Al2O3 catalyst showed the highest GVL productivity of 11.0 kg kg-1cat h-1 with a selectivity of 98.6%, although the catalyst was gradually deactivated with time on stream under high space velocity conditions. In the characterization of the used catalysts, the catalyst deactivation would be caused by the sintering of active Cu-Ni alloy nanoparticles, which could be induced by the cycle of the oxidation with H2O and the reduction with H2.

If you want to learn more about this compound(5-Methylfuran-2(3H)-one)Name: 5-Methylfuran-2(3H)-one, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(591-12-8).

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Some scientific research tips on 148-51-6

If you want to learn more about this compound(5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride)COA of Formula: C8H12ClNO2, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(148-51-6).

Heterocyclic compounds can be divided into two categories: alicyclic heterocycles and aromatic heterocycles. Compounds whose heterocycles in the molecular skeleton cannot reflect aromaticity are called alicyclic heterocyclic compounds. Compound: 148-51-6, is researched, Molecular C8H12ClNO2, about Inhibition of ruminal degradation of L-tryptophan to 3-methylindole in vitro, the main research direction is tryptophan metabolism pulmonary emphysema; antibiotic tryptophan metabolism emphysema.COA of Formula: C8H12ClNO2.

A closed-system, in vitro ruminal fermentation technique was used to screen 27 compounds for their ability to reduce the conversion of L-tryptophan (TRP) [73-22-3] to 3-methylindole (3MI) [83-34-1] in order to inhibit acute bovine pulmonary edema and emphysema. 20-Desoxysalinomycin [64003-50-5], X-206 [36505-48-3], chloral hydrate [302-17-0], nigericin [28380-24-7], lasalocid [11054-70-9], monensin [17090-79-8], narasin [55134-13-9], and salinomycin [53003-10-4] all reduced 3MI production by >80% at 5 μg/mL without reducing total volatile fatty acid production All of these compounds, except chloral hydrate, are polyether antibiotics. At least part of the inhibition due to monensin and narasin occurs at the level of TRP conversion to IAA [87-51-4].

If you want to learn more about this compound(5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride)COA of Formula: C8H12ClNO2, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(148-51-6).

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Can You Really Do Chemisty Experiments About 148-51-6

If you want to learn more about this compound(5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride)COA of Formula: C8H12ClNO2, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(148-51-6).

COA of Formula: C8H12ClNO2. The reaction of aromatic heterocyclic molecules with protons is called protonation. Aromatic heterocycles are more basic than benzene due to the participation of heteroatoms. Compound: 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride, is researched, Molecular C8H12ClNO2, CAS is 148-51-6, about Convulsive effects of 4-deoxypyridoxine in photosensitive baboons. Author is Meldrum, B. S..

In baboons (Papio papio) which when exposed to intermittent light stimulation (ILS) showed myoclonus and electroencephalographic signs of epilepsy, deoxypyridoxine-HCl (I) (10-20 mg/kg, i.v.) did not modify the responses, while 15 min-2 hr after 40-60 mg I/kg, the myoclonic responses to ILS were enhanced. Animals normally giving transient myoclonic responses showed rhythmic myoclonus of the eyelids and face continuing for several sec after the end of ILS. In 4 out of 6 baboons after 80-100 mg I/kg this self-sustaining myoclonus developed into a full tonic-clonic seizure at least once 45-180 min after the drug injection. The injection of 105-150 mg I/kg not only enhanced myoclonic responses to ILS but also led to the appearance after 46-67 min of spontaneous seizures. These recurred every 10-15 min, were often only partial, and commonly originated in, and were sometimes confined to, the occipital cortex. An excess of pyridoxine, given i.v. a few minutes before and after the I, blocked both the enhancement of photosensitivity produced by 100 mg I/kg and spontaneous seizures produced by 150 mg/kg. I may produce these convulsive effects by interfering with the formation or action of pyridoxal phosphate.

If you want to learn more about this compound(5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride)COA of Formula: C8H12ClNO2, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(148-51-6).

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Why do aromatic interactions matter of compound: 148-51-6

If you want to learn more about this compound(5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride)Computed Properties of C8H12ClNO2, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(148-51-6).

Most of the natural products isolated at present are heterocyclic compounds, so heterocyclic compounds occupy an important position in the research of organic chemistry. A compound: 148-51-6, is researched, SMILESS is OC1=C(C)C(CO)=CN=C1C.[H]Cl, Molecular C8H12ClNO2Journal, Comparative Study, Article, Journal of General Microbiology called Synthesis of aflatoxins by the non-growing mycelia of Aspergillus parasiticus and the effect of inhibitors, Author is Gupta, S. R.; Prasanna, H. R.; Viswanathan, L.; Venkitasubramanian, T. A., the main research direction is aflatoxin formation metabolic inhibitor; Aspergillus aflatoxin formation.Computed Properties of C8H12ClNO2.

Aflatoxins were synthesized by nongrowing mycelia of A. parasiticus, the amount and type (B or G) being dependent on the buffer used in the suspension medium. Incorporation of acetate-14C into aflatoxin was decreased by compounds that inhibit ATP production or interfere with the utilization of certain amino acids. In contrast, the specific activities of aflatoxins were increased by compounds that diverted acetate from metabolic pathways other than those leading to aflatoxin formation.

If you want to learn more about this compound(5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride)Computed Properties of C8H12ClNO2, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(148-51-6).

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia