Discover the magic of the 18436-73-2

Compounds in my other articles are similar to this one(4-Chloro-8-methylquinoline)Application In Synthesis of 4-Chloro-8-methylquinoline, you can compare them to see their pros and cons in some ways,such as convenient, effective and so on.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Aminoalkylphenols as antimalarials. II. (Heterocyclic amino)-α-amino-ο-cresols. The synthesis of camoquin》. Authors are Burckhalter, J. H.; Tendick, F. H.; Jones, Eldon M.; Jones, Patricia A.; Holcomb, W. F.; Rawlins, A. L..The article about the compound:4-Chloro-8-methylquinolinecas:18436-73-2,SMILESS:CC1=C2N=CC=C(Cl)C2=CC=C1).Application In Synthesis of 4-Chloro-8-methylquinoline. Through the article, more information about this compound (cas:18436-73-2) is conveyed.

In view of the high antimalarial activity of certain substituted α-amino-ο-cresols, earlier work (C.A. 41, 414d) has been extended to analogs containing heterocyclic nuclei. This reports the preparation of a group of 122 (heterocyclic amino)-α-amino-ο-cresols and a related group of 12 (heterocyclic amino)benzylamines, as well as the new intermediates used therein. This work has resulted in the preparation of a promising antimalarial (SN 10,751) named camoquin, as well as other compounds which are the most active 4-aminoquinoline derivatives heretofore reported in trophozoite-induced Plasmodium gallinaceum infection in the chick. Catalytic reduction of the appropriate nitrophenol in the presence of Ac2O gave these 4-acetamidophenols: 2-Cl, m. 144°, 55% yield; 2-Ph, m. 160°, 60%; and 2-acetamidophenols: 4-Cl, m. 186°, 52%; 4-Ph, m. 165°, 89%; and 4-tert-Bu, m. 170°, 79%. 2-Allyl-4-acetamidophenol, m. 93-4°, was obtained in 83% yield from the rearrangement of 4-CH2:CHCH2OC6H4NHAc. The Mannich reaction on the substituted acetamidophenols gave these 4-acetamido-α-substituted-ο-cresols: diethylamino (I), m. 135°, 82%; dibutylamino, m. 73°, 87% (picrate, m. 183-5°); dibenzylamino, m. 230°, 75%; (2-methyl-1-piperidyl) (HCl.H2O, m. 175°, 65%); 4-morpholinyl, m. 133°, 27%; [methyl(2-hydroxyethyl)amino] (HCl, m. 198°, 50%); (2-butylamino), m. 156°, 37%; (2-hydroxyethylamino) (HCl, m. 230°, 31%); the 6-allyl derivative of I, m. 86°, 58%: the 5-acetamido isomer of I (HCl, m. 210°, 33%); and these 6-acetamido-α-diethylamino-4-substituted-ο-cresols: Cl (HCl, m. 212°, 66%); tert-Bu (HCl, m. 158°, 53%); and Ph (HCl, m. 183°). Acid hydrolysis of the appropriate 4-acetamido compound gave these 4-amino-α-substituted-ο-cresols (di-HCl salts) (all m. with decomposition); diethylamino, SN 12,458, m. 218-20°, 96%; 1-piperidyl, m. 153-5°, 91%; and 4-morpholinyl, m. 259-60°, 45%. The Mannich reaction on 4-nitrophenol (A) and the reaction of the amine on 2-(chloromethyl)-4-nitrophenol (B) were used to prepare these α-substituted-4-nitro-ο-cresol HCl salts (all m. with decomposition): diethylamino, A, m. 224°, 40%; diisopropylamino, B, m. 193°, 19%; dibutylamino, B, m. 176°, 75%; diisobutylamino (free base), B, m. 113°, 43%; diisoamylamino, B, m. 132°, 32%; isopropylamino, B, m. 238°, 38%; isobutylamino, B, m. 247°, 29%; tertbutylamino, B, m. 275°, 20%; 1-piperidyl, A, m. 260°, 68%; and α-diethylamino-4-nitro-6-phenyl-ο-cresol, A, m. 125°, 21%; and 4-tert-butyl-α-diethylamino-6-nitro-ο-cresol, A, m. 103°, 50%. The method of Price and Roberts (C.A. 40, 5739.5) was used to prepare these substituted 4-chloroquinolines: 6-Me, m. 55°, 50%; 6-anilino, m. 148°, 6%; 7-EtO, m. 76°, 53%; 7-hexyloxy, a high-boiling liquid, 41%; 8-Me, m. 99°, 71%; 5,7-di-Me, m. 59°, 51%; 5,8-di-Me, m. 51°, 59%; 5-chloro-8-methoxy, m. 127°, 6%; 5-methyl-8-methoxy, m. 78°, 45%; 6,8-di-Me, m. 90°, 82%; and 6,7,8-trichloro, m. 156°, 39%. The (heterocyclic amino)-α-alkylamino-ο-cresols were prepared by minor variations of the general procedure of heating the chloroheterocycle with the amino-α-alkylamino-ο-cresols in aqueous or alc. solution on the steam bath. The latter were obtained either by acid hydrolysis of the acetamido derivatives or by catalytic reduction of the nitro derivatives and were usually condensed without isolation. The products are isolated either as the free bases or HCl salts. All the quinine equivalents (Q) reported here are based on the B4 test using P. gallinaceum in the chick. Nearly all the HCl salts m. with decomposition and are colored yellow to orange. 4-(4-Quinolylamino)-α-diethylamino-ο-cresol (II) di-HCl, SN 12,452, m. above 300°, was obtained in 48% yield and had a quinine equivalent of 3 (designated hereafter in the form Q 3). Analogs of II, substituted on the quinoline nucleus: 2-Cl (2HCl, SN 11,986, m. 248°, 30%, Q <0.07); 3-Ph, SN 11,631, m. 155°, 31%, Q 0.4; 6-MeO (2HCl, SN 10,274, m. 270°, 75%, Q 8); 6-Cl (HCl.0.5H2O, SN 11,597, m. 220°, 60%, Q 3.0); 6-Me, SN 11,559, m. 172° (2HCl, m. 238°, 56%, Q 4); 6-anilino (2HCl.H2O, SN 12,361, m. 196°, 63%, Q 0.2); 6-dimethylamino (3HCl.0.5H2O, SN 11,984, m. 235°, 73%, Q 2.5); 6-nitro (2HCl.1.5H2O, m. 210°, 63%, Q 0.8); 7-MeO (2HCl.0.5H2O, SN 11,554, m. 210°, 43%, Q 7); 7-EtO (2HCl.2H2O, SN 11,281, m. 136°, 44%, Q 7); (7-hexyloxy, SN 11,634, m. 153°, 35%, Q 0.5; Q 7); 7-Me (2HCl, SN 12,699, m. 245°, 93%, Q 9); 7-Cl (camoquin) SN 10,751, m. 208°, 86%, Q 25 (2HCl.0.5H2O, m. 243°); 2HCl.H2O, m. 183°; (2HCl.2H2O, m. 160°, 90%); 8-Cl, SN 11,551, m. 212° (2HCl.0.5H2O, m. 253°, 79%, Q 0.5); 8-MeO (2HCl.1.5H2O, SN 11,594, m. 241°, 50%, Q 0.8); 8-Me (2HCl.H2O, SN 11,601, m. 253°, 66%, Q 0.7); 5-chloro-3-Me (2HCl, SN 11,985, m. 258°, 48%, Q 0.3); 5,7-di-Cl (2HCl, SN 12,700, m. 200°, 65%, Q 3); 5,7-di-Me (2HCl, SN 11,561, m. 242°, 67%, Q 10); 5,8-di-Cl (2HCl.H2O, SN 11,596, m. 235°, 60%, Q 0.25); 5,8-di-Me (2HCl, SN 11,560, m. 249°, 80%, Q 0.6); 5-chloro-8-methoxy [2HCl, SN 12,162,(incorrectly given as 12,161 in original), m. 231°, 80%, Q 0.4]; 6-methoxy-2-Me (2HCl, SN 9223, m. 278°, 45%, Q 1.2); 6-methoxy-2-Ph (2HCl.1.75H2O, SN 11,592, m. 198°, 61%, Q 0.25); 6,7-di-Cl (2HCl, SN 12,161, m. 257°, 71.5%, Q 5); 6,7-di-MeO (2HCl, SN 13,395, m. 258°, 68%, Q 2.5); 6,7-di-Me, SN 11,990, m. 215°, 49%, Q 6; 6,8-di-Me (2HCl.H2O, SN 11,558, m. 264°, 54%, Q 0.6); 7-chloro-2-Ph (2HCl, SN 11,232, m. 260°, 41%, Q 0.3); 7-chloro-3-Ph, SN 12,228, m. 165°, Q 1; 7-chloro-3-Me (2HCl, SN 10,492, m. 260°, 64%, Q 6); 8-methoxy-5-Me (2HCl, SN 11,632, m. 210°, 90%, Q 0.6); 6,7,8-tri-Cl (2HCl, SN 11,633, m. 277°, 40%, Q <0.3); and 6-HO (2HCl, SN 11,563, m. 262°, 64%, Q 0.2) (prepared by HBr demethylation of the 6-MeO derivative). 4-(6-Methoxy-4-quinolylamino)-α-dibutylamino-ο-cresol (III) (2HCl.1.25H2O, m. 193°, 10%, Q 9); the (7-chloro-3-methyl-4-quinolylamino) analog of III (2HCl.1.5H2O, m. 177°, 43%, Q 10). 4-(6-Methoxy-4-quinolylamino)-α-1-piperidyl-ο-cresol (IV) (2HCl.0.5H2O, SN 12,038, m. 270°, 80%, Q 8); analogs of IV: (6,7-dimethoxy-4-quinolylamino) (2HCl, SN 13,413, m. 230°, 40%, Q 4); (7-chloro-3-methyl-4-quinolylamino) (2HCl, SN 12,360, m. 270°, 47%, Q 2); (6-methyl-4-quinolylamino) (2HCl, SN 12,456, m. 240°, 41%, Q 2.5). 4-(6-Methoxy-4-quinolylamino)-α-4-morpholinyl-ο-cresol (V) (2HCl, SN 11,989, m. 265°, 57%, Q 1); analogs of V: (7-chloro-3-methyl-4-quinolylamino) (2HCl, SN 12,362, m. 242°, 33%, Q 0.15); (6-methyl-4-quinolylamino), SN 12,457, m. 239°, 50%, Q 0.8. 5-(7-Chloro-4-quinolylamino)-α-diethylamino-ο-cresol, SN 13,730, m. 173°, Q 9; 6-(7-chloro-4-quinolylamino)-α-diethylamino-4-(diethylaminomethyl)-ο-cresol-1.5H2O, m. 145°, Q 5; 4-chloro-α-diethylamino-6-(6-methoxy-4-quinolylamino)-ο-cresol (2HCl, SN 12,885, m 205°, 50%, Q 0.5). 6-Chloro-4-(7-chloro-4-quinolylamino)-α-diethylamino-ο-cresol (VI), SN 13,729, m. 225°, Q 12; analogs of VI: 6-Ph (0.5H2O, m. 235°, 25%); 6-allyl, SN 11,991, m. 148°, 44%, Q 10; 6-allyl-α-1-piperidyl, SN 12,697, m. 190°, 32%, Q 4; 6-allyl-α-diallylamino, SN 13,394, m. 131°, 25%, Q 0.7. 6-Allyl-α-diethylamino-4-(6-methoxy-4-quinolylamino)-ο-cresol, SN 12,039, m. 161°, 33%, Q 7. Variations of the alkylamino group on the cresol portion of camoquin were studied: α-amino-4-(7-chloro-4-quinolylamino)-ο-cresol (VII) (2HCl.0.5H2O, SN 1603, m. 325°, 80%, Q 6); analogs of VII (substituents on the α-amino group): benzoyl (HCl, SN. 11,557, m. 289°, 80%, Q 0.15); Et (2HCl, m. 280°, Q 40, 4% conversion, prepared by the Mannich reaction of EtNH2, (HCHO)x, and 7-chloro-4-(4-hydroxyanilino)quinoline (HCl, m. above 320°, 94%)); Pr(2HCl.0.5H2O, m. 244°, 24%, Q 30); iso-Pr (2HCl, m. 287° 50%, Q 40); Bu (2HCl, m. 254°, 6%, Q 30); sec-Bu (2HCl.H2O, m. 252°, 3%, Q 50); iso-Bu (2HCl, m. 256°, 65%, Q 75); tert-Bu (2HCl, m. 285°, 36%, Q 40); Am (2HCl, m. 266°, 15%, Q 50); (1-methylbutyl 2HCl, m. 231°, 22%, Q 40); iso-Am (2HCl, m. 279°, 20%, Q 50); hexyl (2HCl, m. 280°, 56%, Q 25); (2-ethylbutyl (2HCl, m. 263°, 15%, Q 50)); heptyl (2HCl, m. 278°, 29%, Q 15); octyl, m. 150°, 15%, Q 2.5; allyl (2HCl, m. 257°, 3%, Q 20); 1-methylallyl (2HCl.1.75H2O, m. 95°); cyclohexyl (2HCl.0.25H2O, m. 252°, 30%, Q 30); 2-hydroxyethyl (2HCl.H2O, m. 182°, 15%, Q 3); 2-methoxyethyl (2HCl, m. 271°, Q 25); benzyl (2HCl, m. 270°, Q 16); (α-methylphenethyl) (2HCl.0.25H2O, m. 243°, 31%, Q 25); di-Me (2HCl, m. 290°, 85%, Q 6); N-ethyl-N-butyl(2HCl, m. 240°, 65%, Q 30); di-Pr, SN 13,835, m. 181°, 11%, Q 25; di-Bu, SN 14,105, m. 164°, 20%, Q 35; diiso-Bu (0.5H2O, m. 166°, 38%); diiso-Am (0.5H2O, m. 135°); dihexyl (2HCl, m. 220°, 40%, Q 0.5); diheptyl (2HCl, m. 203°, 52%, Q 1); dioctyl (2HCl, m. 192°, 46%, Q 0.2); bis(2-ethylhexyl) (2HCl.H2O, m. 154°, 1%, Q 3); methyl(2-hydroxyethyl) (2HCl, SN 12,363, m. 250°, 63%, Q 3); butyl(2-hydroxyethyl), SN 14,824, m. 149°, 22%, Q 12; bis(2-hydroxyethyl), m. 193°, 25%, Q 0.6; dibenzyl (2HCl, m. 235°, 74%, Q 2.5); N-methyl-N-Ph (H2O, m. 140°, 39%, Q 0.07); N-ethyl-N-Ph, m. 131°, 54%, Q <0.05. Further analogs of VII: α-1-piperidyl (2HCl.2.5H2O, SN 11,636, m. 302°, 77.5%, Q 25); α-(2-methyl-1-piperidyl) (2HCl, SN 12,357, m. 288°, 66%, Q 20); α-4-morpholinyl (2HCl, SN 11,987, m. 292°, 60-5%, Q 4). Compounds containing heterocyclic nuclei other than the 4-quinolyl include the following 4-(heterocyclic amino)-α-diethylamino-ο-cresols: 9-acridyl (2HCl, SN 12,356, m. 265°, 45%, Q 1.5); (3-chloro-9-acridyl) (2HCl, SN 12,355, m. 267°, 52%, Q 3); (4-methoxy-9-acridyl) (2HCl, SN 12,164, m. 245°, 50%, Q 0.15); (3-chloro-5-methyl-9-acridyl) (2HCl, SN 11,988, m. 275°, 40%, Q 0.25); 2-quinolyl (2HCl, SN 9559, m. 230°, 48%, Q 0.12); (6-methoxy-2-quinolyl) (2HCl, SN 11,537, m. 237°, 20.5%, Q 0.7); (5-nitro-2-quinolyl) (2HCl, SN 9307, m. 245°, 33%, Q <0.07); (2-amino-4-pyrimidyl) (2HCl, SN 9591, m. 258°, 41%, Q 1.1); [2-(1-piperidyl)-4-pyrimidyl], SN 10,177, m. 156°, 31%, Q 0.4; (2-amino-6-methyl-4-pyrimidyl) (2HCl, m. 245°, 55%); (4-methoxy-2-benzothiazolyl) (2HCl, SN 11,189, m. 163°, 47%, Q <0.07); (6-chloro-2-methoxy-9-acridyl) (VIII), SN 8617, m. 175°, 50% (H2O, m. 117°; 2HCl, m. 280°, 76%, Q 4; 2HCl.2H2O, m. 180°); analogs of VIII: α-(ethylbutylamino) (2HCl, m. 252°, 36%, Q 5); α-dibutylamino (2HCl, SN 11,599, m. 246°, 69%, Q 2.5); α-diallylamino, SN 13,163, m. 158°, 16%, Q 0.5; α-dihexylamino (2HCl, m. 254°, 23%, Q 0.4); α-dioctylamino (2HCl, m. 285°, 20%, Q <0.06); α-1-piperidylamino (2HCl, SN 11,536, m. 287°, Q 0.6); α-hexylamino (2HCl.H2O, m. 226°, 7%, Q 1); α-(2-hydroxyethylamino) (2HCl.H2O, SN 11,233, m. 284°, 90%, Q 0.2); α-benzamido (HCl.0.5H2O, SN 11,589, m. 294°, 95%, Q <0.04). 5-(6-Chloro-2-methoxy-9-acridylamino)-α-diethylamino-ο-cresol (2HCl.0.5H2O, SN 9614, m. 237°, 50%, Q 1); 4-tert-butyl-6-(6-chloro-2-methoxy-9-acridylamino)-α-diethylamino-ο-cresol (IX) (2HCl, SN 11,544, m. 271°, 98%, Q 0.6); 4-Ph analog of IX (2HCl, SN 11,553, m. 274°, 84%, Q 0.5); 4-diethylaminomethyl analog of IX (3HCl.H2O, SN 11,550, m. 257°, 73%, Q 2); 6-allyl-4-(6-chloro-2-methoxy-9-acridylamino)-α-diethylaminο-ο-cresol (X) (2HCl, SN 11,234, m. 233°, 65%, Q 3); α-diallylamino analog of X (2HCl.H2O, SN 13,399, m. 188°, 12%, Q 0.3); and α-1-piperidyl analog of X, SN 12,701, m. 164°, 44%, Q 2. A series of nitrobenzylamines was prepared by condensation of the nitrobenzyl chloride with the amine in absolute EtOH. During the course of this work, 2-(chloromethyl)-4-nitrophenetole,m. 72-5°, was obtained in 75% yield from the chloromethylation of 4-nitrophenetole. The nitrobenzylamines were reduced catalytically in absolute EtOH and the resulting aminobenzylamines without isolation were condensed with the chloroheterocycle. Thus were obtained: N,N-diethyl-3-nitrobenzylamine, b6 145-8°, 60%; 4-nitro isomer (XI) (HCl, m. 162°, 45%); analogs of XI: N,N-di-Pr (HCl, m. 138°, 68%); N-monoisopropyl (HCl, m. 232°, 82%); N-monoisobutyl (HCl, m. 214°, 64%). N,N-Diethyl-5-nitro-2-methoxybenzylamine (XII) (HCl, m. 178°, 72%); analogs of XII: N-monoisobutyl (HCl, m. 176°, 63%); N-monoamyl (HCl salt could not be separated from an impurity of AmNH2.HCl). N,N-Diethyl-5-nitro-2-ethoxybenzylamine (HCl, m. 182°, 56%). 3-(7-Chloro-4-quinolylamino)-N,N-diethylbenzylamine (2HCl.2H2O, SN 11,590, m. 128° (all these HCl salts m. with decomposition), 85%, Q 1); 4-(7-chloro-4-quinolylamino)-N,N-diethylbenzylamine (XIII) (2HCl, SN 12,455, m. 261°, Q 4); N,N-di-Pr analog of XIII (2HCl, m. 255°, 60%, Q 4); the N-monoisopropyl analog of XIII (2HCl salt, m. 303°, 23%, Q 10); N-monoisobutyl analog of XIII (2HCl.H2O, m. 288°, 76%); 5-(7-chloro-4-quinolylamino)-N,N-diethyl-2-methoxybenzylamine (XIV), m. 203°, 64%, Q 25; N-monoisobutyl analog of XIV (2HCl.0.25H2O, m. 194°, 76%, Q 17); N-monoamyl analog of XIV (2HCl, m. 288°, 42%, Q 15); 2-ethoxy analog of XIV (2HCl.2H2O, m. 247°, 73%, Q 8); 3-(6-chloro-2-methoxy-9-acridylamino)-N,N-diethylbenzylamine (XV) (2HCl.0.75H2O, SN 10,984, m. 278°, 55%, Q 0.5); the 4-substituted benzyl isomer of XV (2HCl.0.5H2O, SN 10,028, m. 260°, 92%, Q 0.4); and 5-(6-chloro-2-methoxy-9-acridylamino)-2-methoxy-N,N-diethylbenzylamine (2HCl.0.5H2O, m. 212°, 67%, Q 3). 6-Chloro-9-(4-hydroxyanilino)-2-methoxyacridine, m. 266° (decomposition) (HCl, orange, m. above 300°, prepared in 98% yield from p-NH2C6H4OH and 6,9-dichloro-2-methoxyacridine on the steam bath), failed to undergo the usual Mannich reaction. Failure of this reaction led to the development of the method of synthesis used for all of the heterocyclic derivatives reported in this paper. Compounds in my other articles are similar to this one(4-Chloro-8-methylquinoline)Application In Synthesis of 4-Chloro-8-methylquinoline, you can compare them to see their pros and cons in some ways,such as convenient, effective and so on.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Top Picks: new discover of 148-51-6

Compounds in my other articles are similar to this one(5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride)Application In Synthesis of 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride, you can compare them to see their pros and cons in some ways,such as convenient, effective and so on.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Degradation of Cyclohexane to Benzene》. Authors are Willstatter, Richard; Hatt, Daniel.The article about the compound:5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloridecas:148-51-6,SMILESS:OC1=C(C)C(CO)=CN=C1C.[H]Cl).Application In Synthesis of 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride. Through the article, more information about this compound (cas:148-51-6) is conveyed.

cf. C. A., 6, 748.-The prepare of cyclohexene by heating cyclohexanol with (CO2H)2 (Zelinskii and Zelikov, Ber., 34, 3251) gives poor yields owing to the formation (15 g. from 60 g. of alc.) of dicyclohexyl oxalate, (CO2 C6H11)2, quadratic leaves, m. 42°. Brunel’s method (use of KHSO4, Bull. soc. chim. 33, 270) gives an 80% yield, together with (C6H11)2O, b. 97-8.5°,b737 259-40° (Ipatiev and Philipov, C. A., 3, 1014, give the b. p. as 275-7°). Cyclohexene dibromide, heated 9 hrs. at 110-5° in scaled tubes with 6 mols. NHMe2 in 18% C6H6 solution, gave 75% of δ-dimethylaminocyclohexene, b725 89-91.5°, b725 160.5-2.5°. Chloroplatinate, prisms, m. 185°. Methiodide, needles, m. 173-4° 1,3-Cyclohexadiene prepared by Crossley’s method from cyclohexene dibromide and quinoline (J.Chem.Soc., 85, 1403) contains cyclohexene, bromocyclohexene and C6H6 (20% of the latter in 145 g. of the crude product). Obtained pure by Harries’ method (C. A., 6, 108), It b72, 78.3-8.8°, d420 0.8404, nD20 1.47439,nα20 1.47025,nβ20 1.48516, nγ20 1.49491, MD 26.77, Mα 26.59, Mβ 27.19, Mγ 27.55, Mγ-α 0.97. It quickly absorbs 4 ats.H in the presence of Pt. With NHMe2 in cold concentrateC6H6 solution, the dibromide gives quant. Δ2-tetramethyldiaminocyclohexene, b10 90.5-2.5°, b725 219.5-3-5°, d40 0.920. Chloroplatinate, rhombic tablets, blacken 240°, decompose 259-60°. Methiodide, microscopic quadratic tables, m. 236° (decompose); the quaternary base obtained by the action of Ag2O on the methiodide, decompose, on evaporation of the solution, into C6H6 and NMe2, the temperature of decompose depending on the pressure (98-104° at atm. pressure with an 80-5% yield of C6H4; 40-50° under 20° mm.; -3° to 5° under 0.008-0.02 mm.

Compounds in my other articles are similar to this one(5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride)Application In Synthesis of 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride, you can compare them to see their pros and cons in some ways,such as convenient, effective and so on.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

The origin of a common compound about 18436-73-2

Compounds in my other articles are similar to this one(4-Chloro-8-methylquinoline)Product Details of 18436-73-2, you can compare them to see their pros and cons in some ways,such as convenient, effective and so on.

Product Details of 18436-73-2. The mechanism of aromatic electrophilic substitution of aromatic heterocycles is consistent with that of benzene. Compound: 4-Chloro-8-methylquinoline, is researched, Molecular C10H8ClN, CAS is 18436-73-2, about Synthesis and photochemistry of two quinoline analogs of the perimidinespirohexadienone family of photochromes. Author is Moerdyk, Jonathan P.; Speelman, Amy L.; Kuper, Kenneth E.; Heiberger, Brian R.; Ter Louw, Ryan P.; Zeller, Daniel J.; Radler, Andrew J.; Gillmore, Jason G..

The authors report the detailed synthesis and photochem. of two analogs (specifically 3,5-di-tert-butyl-7′-methyl- and 3,5-di-tert-butyl-7′,9′-dimethyl-1′,3′-dihydrospirocyclohexa[2,5]diene-1,2′-pyrido[4,3,2-de]quinazolin-4-one) of the perimidinespirohexadienone (3,5-di-tert-butyl-1′,3′-dihydrospirocyclohexa[2,5]diene-1,2′-perimidin-4-one) family of photochromes in which the naphthalene moiety of the parent is replaced by a quinoline, and compare them to the parent compound Molar absorptivities of both the short wavelength spirocyclic isomer (SW) and long wavelength quinonimine isomer (LW) of each were determined by a combination of proton NMR and UV-vis spectroscopy in solvents of varying polarity. Quantum yield measurements for photoisomerization of SW to LW are reported in those same solvents, with qual. extrapolation to addnl. solvents. The position and rate of the thermal equilibrium reverting LW to SW is estimated for these compounds The 9′-Me in SW (6-Me in LW) is found to be essential for complete reversion of LW to SW in the dark. Finally one-dimensional NOE NMR spectroscopy was used to conclusively determine the structure of LW for the quinoline analogs as the 4-(5-aminoquinolin-4-ylimino)-2,6-di-tert-butylcyclohexa-2,5-dienone resulting from opening toward the quinoline nitrogen, rather than the 4-(4-aminoquinolin-5-ylimino) structure that would result from spirocyclic ring opening away from the quinoline nitrogen which had been initially proposed by V.I Minkin et al. (1999) for very similar compounds

Compounds in my other articles are similar to this one(4-Chloro-8-methylquinoline)Product Details of 18436-73-2, you can compare them to see their pros and cons in some ways,such as convenient, effective and so on.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Discovery of 591-12-8

Compounds in my other articles are similar to this one(5-Methylfuran-2(3H)-one)Recommanded Product: 5-Methylfuran-2(3H)-one, you can compare them to see their pros and cons in some ways,such as convenient, effective and so on.

Recommanded Product: 5-Methylfuran-2(3H)-one. So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic. Compound: 5-Methylfuran-2(3H)-one, is researched, Molecular C5H6O2, CAS is 591-12-8, about Role of group V elements on the hydrogenation activity of Ni/TiO2 catalyst for the vapour phase conversion of levulinic acid to γ-valerolactone.

Influence of group V elements such as Ta, Nb and V on the product distribution in the vapor phase hydrogenation of levulinic acid (LA) over Ni/TiO2 catalyst was examined at ambient pressure. The Nb promoted Ni/TiO2 demonstrated a high selectivity towards γ-valerolactone (GVL) compared to other catalysts at 275 °C. The TPR results showed a lower H2 uptake over Ta and V modified Ni/TiO2 which was explained due to a strong interaction between these oxide species with nickel. Presence of a high ratio of ionic nickel (Ni2+) on Ta and V modified catalyst could be a possible reason for the formation of valeric acid (VA) through the ring opening of GVL. The high GVL selectivity over the Ni-Nb/TiO2 catalyst attributed to the presence of a high proportion of Lewis acid sites in conjunction with finely dispersed Ni species on the catalyst surface. This however, is accomplished by the pyridine adsorbed diffuse reflectance IR Fourier transform spectroscopy (DRIFTS) and CO-chemisorption results.

Compounds in my other articles are similar to this one(5-Methylfuran-2(3H)-one)Recommanded Product: 5-Methylfuran-2(3H)-one, you can compare them to see their pros and cons in some ways,such as convenient, effective and so on.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Extracurricular laboratory: Synthetic route of 18436-73-2

Compounds in my other articles are similar to this one(4-Chloro-8-methylquinoline)Application of 18436-73-2, you can compare them to see their pros and cons in some ways,such as convenient, effective and so on.

Application of 18436-73-2. Aromatic compounds can be divided into two categories: single heterocycles and fused heterocycles. Compound: 4-Chloro-8-methylquinoline, is researched, Molecular C10H8ClN, CAS is 18436-73-2, about C(sp3)-H amination of 8-methylquinolines with azodicarboxylates under Rh(III) catalysis: cytotoxic evaluation of quinolin-8-ylmethanamines. Author is Jeong, Taejoo; Mishra, Neeraj Kumar; Dey, Prasanta; Oh, Hyunjung; Han, Sangil; Lee, Suk Hun; Kim, Hyung Sik; Park, Jihye; Kim, In Su.

The rhodium(III)-catalyzed C(sp3)-H amination reaction of 8-methylquinolines and azodicarboxylates is described. A cationic rhodium catalyst in the presence of lithium acetate and lithium carbonate was found to be an optimal catalytic system for the construction of quinolin-8-ylmethanamine derivatives, which were evaluated for in vitro cytotoxicity against human breast adenocarcinoma cells (MCF-7) and human prostate adenocarcinoma cells (LNCaP).

Compounds in my other articles are similar to this one(4-Chloro-8-methylquinoline)Application of 18436-73-2, you can compare them to see their pros and cons in some ways,such as convenient, effective and so on.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Sources of common compounds: 18436-73-2

Compounds in my other articles are similar to this one(4-Chloro-8-methylquinoline)Electric Literature of C10H8ClN, you can compare them to see their pros and cons in some ways,such as convenient, effective and so on.

Epoxy compounds usually have stronger nucleophilic ability, because the alkyl group on the oxygen atom makes the bond angle smaller, which makes the lone pair of electrons react more dissimilarly with the electron-deficient system. Compound: 4-Chloro-8-methylquinoline, is researched, Molecular C10H8ClN, CAS is 18436-73-2, about Cp*CoIII-Catalyzed Alkylation of Primary and Secondary C(sp3)-H Bonds of 8-Alkylquinolines with Maleimides.Electric Literature of C10H8ClN.

The cobalt(III)-catalyzed C(sp3)-H bond alkylation of 8-Me quinoline with maleimides is reported. In contrast to the rhodium-catalyzed method, in the current cobalt-catalyzed method, a catalytic amount of acid is used, and importantly, it is also applicable to secondary C(sp3)-H bond alkylation. The developed methodol. is applicable for N-alkyl- and N-aryl-substituted maleimides and unsubstituted maleimides, and it also tolerates the variety of functional groups on the 8-Me quinoline moiety. Atom-economy and high regioselectivity with good to excellent yields of the alkylated products under mild reaction conditions are important features of this method.

Compounds in my other articles are similar to this one(4-Chloro-8-methylquinoline)Electric Literature of C10H8ClN, you can compare them to see their pros and cons in some ways,such as convenient, effective and so on.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Extracurricular laboratory: Synthetic route of 148-51-6

Compounds in my other articles are similar to this one(5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride)Reference of 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride, you can compare them to see their pros and cons in some ways,such as convenient, effective and so on.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Derivatives of pyridine and quinoline. LII. Synthesis of 2,4-dimethyl-3-hydroxy-5-(hydroxymethyl)pyridine (4-desoxyadermine)》. Authors are van Wagtendonk, H. M.; Wibaut, J. P..The article about the compound:5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloridecas:148-51-6,SMILESS:OC1=C(C)C(CO)=CN=C1C.[H]Cl).Reference of 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride. Through the article, more information about this compound (cas:148-51-6) is conveyed.

cf. C. A. 35, 5112.3. NCCH2CONH2 and CH2Ac2 with piperidine in EtOH at 80° give 87% of 4,6-dimethyl-3-cyano-2-pyridone (I), m. 293° (corrected); with HNO3 (d. 1.52) in Ac2O at 5°, I gives a crude yield of 40-6% of the 5-NO2 derivative which with PCl5 in PhCl gives 24-8% of 2,4-dimethyl-3-nitro-5-cyano-6-chloropyridine (II), yellow, m. 114-15°. Catalytic reduction of II with Pd-C in 96% EtOH gives 81.4% of 2,4-dimethyl-3-amino-5-cyano-6-chloropyridine, m. 149-9.2° (corrected); further reduction with Pd-C catalyst in AcOH-AcONa at room temperature gives 2,4-dimethyl-3-amino-5-(aminomethyl)pyridine, characterized as the dipicrate, m. 244° (decomposition), and the di-HCl salt (III), with 1 mol. H2O, does not m. 300°. Reaction of III in 2 N H2SO4 with NaNO2 at 80° gives 2,4-dimethyl-3-hydroxy-5-(hydroxymethyl)pyridine (4-desoxyadermine), isolated as the HCl salt, m. 257°.

Compounds in my other articles are similar to this one(5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride)Reference of 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride, you can compare them to see their pros and cons in some ways,such as convenient, effective and so on.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Fun Route: New Discovery of 591-12-8

Compounds in my other articles are similar to this one(5-Methylfuran-2(3H)-one)HPLC of Formula: 591-12-8, you can compare them to see their pros and cons in some ways,such as convenient, effective and so on.

HPLC of Formula: 591-12-8. The reaction of aromatic heterocyclic molecules with protons is called protonation. Aromatic heterocycles are more basic than benzene due to the participation of heteroatoms. Compound: 5-Methylfuran-2(3H)-one, is researched, Molecular C5H6O2, CAS is 591-12-8, about Carbon nanotube/PTFE as a hybrid platform for lipase B from Candida antarctica in transformation of α-angelica lactone into alkyl levulinates. Author is Szelwicka, Anna; Kolanowska, Anna; Latos, Piotr; Jurczyk, Sebastian; Boncel, Slawomir; Chrobok, Anna.

In this work an enzymic method for the synthesis of alkyl levulinates from α-angelica lactone has been reported for the first time. Lipase B from Candida antarctica was immobilized via interfacial activation on the surface of a hybrid support, consisting of com. available multi-walled carbon nanotubes (MWCNTs) and polytetrafluoroethylene (PTFE). Among the biocatalysts with various contents of PTFE in the support, the CALB/MWCNT-PTFE (0.10 wt%) biocatalyst with 22.5 wt% CALB loading was determined as the most active one in the model synthesis of the Bu levulinate in toluene. n-Bu levulinate was obtained quantitively after 120 min of the reaction under the selected reaction conditions (2-fold molar excess of n-butanol, 0.150 g of biocatalyst per 1 mmol of α-angelica lactone, 20°C). The yield of Bu levulinate was found to be higher than that in the presence of accurate amounts of sulfuric acid or Novozyme-435. Addnl., the unique stability of the developed biocatalyst was demonstrated over 6 reaction cycles at 20°C. The biocatalyst remained stable over 3 reaction cycles at 60°C as well. The essence of the proposed approach lies in the possibility to overcome the equilibrium limitations occurring in the conventional Fisher esterification. The activity of the elaborated hybrid biocatalyst in the reactions non-specific for lipases is a clear proof of the versatility of the novel system.

Compounds in my other articles are similar to this one(5-Methylfuran-2(3H)-one)HPLC of Formula: 591-12-8, you can compare them to see their pros and cons in some ways,such as convenient, effective and so on.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Interesting scientific research on 148-51-6

Compounds in my other articles are similar to this one(5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride)Application of 148-51-6, you can compare them to see their pros and cons in some ways,such as convenient, effective and so on.

Most of the compounds have physiologically active properties, and their biological properties are often attributed to the heteroatoms contained in their molecules, and most of these heteroatoms also appear in cyclic structures. A Journal, Zb. Prikl. Khim. called Synthesis of 2,4-dimethyl-3-hydroxy-5-hydroxymethylpyridine, Author is Balyakina, M. V.; Rubtsov, I. A.; Zhdanovich, E. S.; Preobrazhenskii, N. A., which mentions a compound: 148-51-6, SMILESS is OC1=C(C)C(CO)=CN=C1C.[H]Cl, Molecular C8H12ClNO2, Application of 148-51-6.

2,4-Dimethyl- 3 – hydroxy-5- hydroxymethylpyridine (4- deoxypyridoxine) (I) was synthesized via the following intermediates: 2,4-dimethyl-5-cyano-6-pyridone (II), 2,4-dimethyl-3-nitro-5-cyano-6-pyridone (III), and 2,4-dimethyl-3-nitro-5-cyano-6-chloropyridine (IV). Reduction of IV was carried out in 1 step in dilute HCl over Pd-C. 2,4-Dimethyl-3-amino-5-aminomethylpyridine was converted without isolation to I by treatment with NaNO2. Thus, 33 ml. NH4OH (d20 0.9) was added with stirring to 40 g. EtO2CCH2CN, the mixture cooled with ice to 0-2° and the precipitate filtered off, washed at 0° with 20 ml. cold EtOH, and dried to yield 23.8 g. cyanoacetamide (V), m. 120-2°. The filtrate was evaporated to dryness to yield an addnl. 3.95 g. Acetylacetone (10.0 g.) was added at 70° to 8.4 g. V in 50 ml. MeOH and 1.12 ml. Me2NH to precipitate 88.1% II, m. 293.1-4.2°. A suspension of 4.44 g. II in 15 ml. Ac2O is treated with stirring with 2.3 ml. HNO3 (d20 1.4) and 2.3 ml. Ac2O at 35-40°, and the mixture stirred 2 hrs. at 18-20° and poured upon 23 g. crushed ice, to precipitate 56.4% yellow III, m. 272.0-2.6° (alc.). P2O5 (5.3 g.) is added to a suspension of 3.6 g. III in 36 ml. PhCl, the mixture heated with stirring 3 hrs. at 118-120° the solvent removed at 45-50°/10 mm., the residue treated with 3.6 ml. absolute alc., stirred, and left 8 hrs. at 0-4°, the precipitate filtered off, washed at 0° with 2 ml. alc., and dried, and the residue extracted with petr. ether (b. 60-70°) to give 62.2% yellow IV, m. 114-15°. IV (2.4 g.) in 25 ml. ice water was added to a pre-hydrogenated mixture of 0.10 g. PdCl2 with H2O, HCl, and C, the hydrogenation continued until the theoretical H absorption, the catalyst separated and washed with 2 ml. H2O, 2.4 ml. HCl (d20 1.18) added to the solution and washings, and the solution heated 1.5 hrs. at 80-5° during which 1.6 g. NaNO2 in 5 ml. H2O was added, the heating continued 30 more min. (neg. starch-iodide test), the solution evaporated in vacuo, the residue extracted with absolute alc., the extracts treated with activated C and concentrated until the appearance of crystals, the mixture kept 8 hrs. at 0-4°, and the precipitate filtered off, washed at 0° with 1 ml. alc., and dried to give 42.2% I, m. 256.1-7.2°.

Compounds in my other articles are similar to this one(5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride)Application of 148-51-6, you can compare them to see their pros and cons in some ways,such as convenient, effective and so on.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

The effect of reaction temperature change on equilibrium 148-51-6

Compounds in my other articles are similar to this one(5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride)Reference of 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride, you can compare them to see their pros and cons in some ways,such as convenient, effective and so on.

Reference of 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride. Aromatic heterocyclic compounds can also be classified according to the number of heteroatoms contained in the heterocycle: single heteroatom, two heteroatoms, three heteroatoms and four heteroatoms. Compound: 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride, is researched, Molecular C8H12ClNO2, CAS is 148-51-6, about Merits of ascites tumors for chemotherapeutic screening. I. Author is Sugiura, Kanematsu.

Ehrlich ascites, Krebs 2 ascites carcinomas, and sarcoma 180 ascites tumor were used in the present study. Fresh ascites fluid containing 106 cancer cells were injected into mice and the recipient regularly developed large amounts of milky ascites (5 to 20 cc.) in 1 to 2 wk and died in 1 to 3 wk. The tumors had 100% takes and there were generally no spontaneous regressions. The exudates contained 5 to 10% normal cells. For the chemotherapy test, a donor mouse was selected 1 to 2 wk, after inoculation and 2 to 5 mL. of milky fluid withdrawn, the cells counted in a hemocytometer, and a proper dilution made with 0.9% NaCl solution I.p. injections of 0.1 mL. of fluid containing 106 cells was made. Each group of animals was divided into a control and treatment group. The progress of the tumors was recorded by daily weight measurement and by measuring the amount of ascitic fluid 10 days after the inoculation. The inhibition effect was then estimated from the effects on the ascites and the survival. Chemotherapeutic agents were injected in solvents as necessary; 0.5 cc. CM-cellulose, 0.5 cc. peanut oil, 0.1 cc. sesame oil were used. One hundred compounds were tested on all 3 tumors; these consisted of nitrogen mustards, ethyleneimines, phosphoramides, folic acid analogs and other pteridines, carbamates, purines, pyrimidines, formamides, steroids, hormones, enzymes, antibiotics, antivitamins, inorganic salts, and others. In 64% of the tests the response to agents was identical in all 3 tumors. A similar study was made of 54 agents on the solid and ascites form of the Ehrlich carcinoma and sarcoma 180. The ascites form usually showed the greater sensitivity to the carcinostatic agent.

Compounds in my other articles are similar to this one(5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride)Reference of 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride, you can compare them to see their pros and cons in some ways,such as convenient, effective and so on.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia