Gholinejad, Mohammad team published research on Journal of Organometallic Chemistry in 2022 | 4595-59-9

HPLC of Formula: 4595-59-9, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., 4595-59-9.

The systematic study of pyrimidines began in 1884 with Pinner, who synthesized derivatives by condensing ethyl acetoacetate with amidines. Pinner first proposed the name “pyrimidin” in 1885. 4595-59-9, formula is C4H3BrN2, Name is 5-Bromopyrimidine. The parent compound was first prepared by Gabriel and Colman in 1900, by conversion of barbituric acid to 2,4,6-trichloropyrimidine followed by reduction using zinc dust in hot water. HPLC of Formula: 4595-59-9.

Gholinejad, Mohammad;Esmailoghli, Hamid;Khosravi, Faezeh;Sansano, Jose M. research published 《 Ionic liquid modified carbon nanotube supported palladium nanoparticles for efficient Sonogashira-Hagihara reaction》, the research content is summarized as follows. A palladium supported onto an ionic liquid-modified carbon nanotube was prepared SEM, energy dispersive spectroscopy, thermogravimetric anal., transmission electron microscopy and XPS were used to complete its characterization. The application as catalyst in the copper-free Sonogashira-Hagihara coupling was also studied employing different substrates. This heterogeneous catalyst was successfully recycled for 5 consecutive identical reactions maintaining its efficiency. After this fifth catalytic run the catalyst was characterized again.

HPLC of Formula: 4595-59-9, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., 4595-59-9.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Gholinejad, Mohammad team published research on ChemistrySelect in 2021 | 4595-59-9

HPLC of Formula: 4595-59-9, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., 4595-59-9.

The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives, including the nucleotides cytosine, thymine and uracil, thiamine (vitamin B1) and alloxan. 4595-59-9, formula is C4H3BrN2, Name is 5-Bromopyrimidine. It is also found in many synthetic compounds such as barbiturates and the HIV drug, zidovudine. HPLC of Formula: 4595-59-9.

Gholinejad, Mohammad;Mirmohammadi, Soheil;Sansano, Jose M. research published 《 Novel Water Dispersible and Magnetically Recoverable Palladium Nano Catalyst for Room-Temperature Suzuki-Miyaura Coupling Reaction》, the research content is summarized as follows. A new magnetic composite comprising starch, imidazolium and triazol groups was used as a support for stabilization of palladium nanoparticles. This material had been characterized by different techniques showing the presence of small and uniform Pd nanoparticles in about 2 nm size. Measuring contact angle confirmed important role of starch on increasing hydrophilic nature of the catalyst. Using 0.05 mol% of this catalyst aryl iodides or bromides reacted with boronic acids at room temperature in aqueous media and the corresponding products were obtained in very good to excellent yields. Hot filtration and PVPy poisoning tests confirmed the heterogeneous nature of the catalyst. E-factor of the catalyst was found in acceptable range and close to green chem. standards This catalyst was magnetically recovered and recycled for 10 consecutive times with small decrease in activity. Also, the robustness of this catalytic system was demonstrated by the characterization of the reused catalyst.

HPLC of Formula: 4595-59-9, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., 4595-59-9.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Geetha, Duvuru team published research on Journal of Nephrology in 2022 | 65-86-1

65-86-1, Orotic acid anhydrous is a hydrogen bonding interaction that can be found in biological systems. It plays a role in the physiological effects of orotic acid, which is a metabolite of uridine and an intermediate in the synthesis of pyrimidine nucleotides. Orotic acid has antimicrobial properties and has been shown to inhibit enzyme activities involved in energy metabolism, such as polymerase chain reaction (PCR) and adenosine triphosphate (ATP) synthase. Orotic acid also inhibits the growth of bacteria, fungi, and parasites. Orotic acid anhydrous is used for treating myocardial infarcts or brain functions. The untreated group was given no treatment at all.
Orotic acid, also known as orotate or orotsaeure, belongs to the class of organic compounds known as pyrimidinecarboxylic acids. These are pyrimidines with a structure containing a carboxyl group attached to the pyrimidine ring. Orotic acid exists as a solid, slightly soluble (in water), and a moderately acidic compound (based on its pKa). Orotic acid has been found in human liver and pancreas tissues, and has also been primarily detected in saliva, feces, urine, and blood. Within the cell, orotic acid is primarily located in the cytoplasm and mitochondria. Orotic acid exists in all eukaryotes, ranging from yeast to humans. Orotic acid participates in a number of enzymatic reactions. In particular, Orotic acid can be biosynthesized from L-dihydroorotic acid and quinone; which is mediated by the enzyme dihydroorotate dehydrogenase (quinone), mitochondrial. In addition, Orotic acid and phosphoribosyl pyrophosphate can be converted into orotidylic acid through its interaction with the enzyme uridine monophosphate synthetase isoform a. In humans, orotic acid is involved in the pyrimidine metabolism pathway. Orotic acid is also involved in several metabolic disorders, some of which include the mngie (mitochondrial neurogastrointestinal encephalopathy) pathway, dihydropyrimidinase deficiency, UMP synthase deficiency (orotic aciduria), and Beta ureidopropionase deficiency. Outside of the human body, orotic acid can be found in a number of food items such as green vegetables, alaska blueberry, chickpea, and colorado pinyon. This makes orotic acid a potential biomarker for the consumption of these food products. Orotic acid is a potentially toxic compound. Orotic acid has been found to be associated with several diseases known as phosphoenolpyruvate carboxykinase deficiency 1, cytosolic and hyperornithinemia-hyperammonemia-homocitrullinuria; orotic acid has also been linked to several inborn metabolic disorders including n-acetylglutamate synthetase deficiency, lysinuric protein intolerance, and ornithine transcarbamylase deficiency.
Orotic acid appears as white crystals or crystalline powder.
Orotic acid is a pyrimidinemonocarboxylic acid that is uracil bearing a carboxy substituent at position C-6. It has a role as a metabolite, an Escherichia coli metabolite and a mouse metabolite. It derives from a uracil. It is a conjugate acid of an orotate., Application of C5H4N2O4

The systematic study of pyrimidines began in 1884 with Pinner, who synthesized derivatives by condensing ethyl acetoacetate with amidines. Pinner first proposed the name “pyrimidin” in 1885. 65-86-1, formula is C5H4N2O4, Name is 2,6-Dioxo-1,2,3,6-tetrahydropyrimidine-4-carboxylic acid. The parent compound was first prepared by Gabriel and Colman in 1900, by conversion of barbituric acid to 2,4,6-trichloropyrimidine followed by reduction using zinc dust in hot water. Application of C5H4N2O4.

Geetha, Duvuru;Attarwala, Nabeel;Zhang, Cissy;Kant, Sam;Antiochos, Brendan;Seo, Philip;Le, Anne research published 《 Serum and urinary metabolites discriminate disease activity in ANCA associated glomerulonephritis in a pilot study》, the research content is summarized as follows. Renal biopsy is currently the gold standard for diagnosing active renal vasculitis. In this pilot study, metabolomics anal. was used to investigate the differences in metabolic profiles between paired patients′ serum and urine samples collected during both the active and the remission phase of anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitides (AAV). Ten patients with AAV renal disease were included. Mean age was 61 years, with 6 patients each being male and Caucasian. Mean Birmingham Vasculitis Activity Score (BVAS) and mean glomerular filtration rate (GFR) were 17 and 28, resp. We found that while the citric acid cycle intermediates citrate, iso-citrate and oxaloacetate had lower intensities in the active phase samples as compared to the remission phase samples. The intensities of other metabolites of carbohydrate metabolism, amino acid metabolism, and nucleotide synthesis were significantly higher in the active phase samples, indicating the upregulation of these pathways for the production of energy and other biomols. such as proteins and nucleic acids during the active phase of AAV. This pilot study suggests that serum and urinary metabolomic profiling may be useful to monitor disease activity in renal AAV.

65-86-1, Orotic acid anhydrous is a hydrogen bonding interaction that can be found in biological systems. It plays a role in the physiological effects of orotic acid, which is a metabolite of uridine and an intermediate in the synthesis of pyrimidine nucleotides. Orotic acid has antimicrobial properties and has been shown to inhibit enzyme activities involved in energy metabolism, such as polymerase chain reaction (PCR) and adenosine triphosphate (ATP) synthase. Orotic acid also inhibits the growth of bacteria, fungi, and parasites. Orotic acid anhydrous is used for treating myocardial infarcts or brain functions. The untreated group was given no treatment at all.
Orotic acid, also known as orotate or orotsaeure, belongs to the class of organic compounds known as pyrimidinecarboxylic acids. These are pyrimidines with a structure containing a carboxyl group attached to the pyrimidine ring. Orotic acid exists as a solid, slightly soluble (in water), and a moderately acidic compound (based on its pKa). Orotic acid has been found in human liver and pancreas tissues, and has also been primarily detected in saliva, feces, urine, and blood. Within the cell, orotic acid is primarily located in the cytoplasm and mitochondria. Orotic acid exists in all eukaryotes, ranging from yeast to humans. Orotic acid participates in a number of enzymatic reactions. In particular, Orotic acid can be biosynthesized from L-dihydroorotic acid and quinone; which is mediated by the enzyme dihydroorotate dehydrogenase (quinone), mitochondrial. In addition, Orotic acid and phosphoribosyl pyrophosphate can be converted into orotidylic acid through its interaction with the enzyme uridine monophosphate synthetase isoform a. In humans, orotic acid is involved in the pyrimidine metabolism pathway. Orotic acid is also involved in several metabolic disorders, some of which include the mngie (mitochondrial neurogastrointestinal encephalopathy) pathway, dihydropyrimidinase deficiency, UMP synthase deficiency (orotic aciduria), and Beta ureidopropionase deficiency. Outside of the human body, orotic acid can be found in a number of food items such as green vegetables, alaska blueberry, chickpea, and colorado pinyon. This makes orotic acid a potential biomarker for the consumption of these food products. Orotic acid is a potentially toxic compound. Orotic acid has been found to be associated with several diseases known as phosphoenolpyruvate carboxykinase deficiency 1, cytosolic and hyperornithinemia-hyperammonemia-homocitrullinuria; orotic acid has also been linked to several inborn metabolic disorders including n-acetylglutamate synthetase deficiency, lysinuric protein intolerance, and ornithine transcarbamylase deficiency.
Orotic acid appears as white crystals or crystalline powder.
Orotic acid is a pyrimidinemonocarboxylic acid that is uracil bearing a carboxy substituent at position C-6. It has a role as a metabolite, an Escherichia coli metabolite and a mouse metabolite. It derives from a uracil. It is a conjugate acid of an orotate., Application of C5H4N2O4

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Gebrekiristos, Mezgebe team published research on International Journal of Experimental Pathology in 2022 | 554-01-8

Recommanded Product: 4-Amino-5-methylpyrimidin-2(1H)-one, 5-Methylcytosine is a methylated form of the nucleobase cytosine occurring predominantly in cytosine-phosphate-guanine (CpG) islands that are produced by DNA methyltransferases and may regulate gene expression. Like cytosine, the DNA sequence containing 5-methylcytosine (5-mC) is able to be replicated without error and 5-mC can pair with guanine in double stranded DNA. However, DNA sequences containing a high local concentration of 5-mC may be less transcriptionally active than areas with higher ratios of unmodified cytosine.
5-Methylcytosine belongs to the class of organic compounds known as hydroxypyrimidines. These are organic compounds containing a hydroxyl group attached to a pyrimidine ring. Pyrimidine is a 6-membered ring consisting of four carbon atoms and two nitrogen centers at the 1- and 3- ring positions. 5-Methylcytosine exists as a solid, slightly soluble (in water), and a very weakly acidic compound (based on its pKa). Within the cell, 5-methylcytosine is primarily located in the cytoplasm. 5-Methylcytosine can be biosynthesized from cytosine. Outside of the human body, 5-methylcytosine can be found in tea. This makes 5-methylcytosine a potential biomarker for the consumption of this food product.
5-methylcytosine is a pyrimidine that is a derivative of cytosine, having a methyl group at the 5-position. It has a role as a human metabolite. It is a member of pyrimidines and a methylcytosine. It derives from a cytosine.
5-Methylcytosine is a nucleic acid that is found in the DNA and RNA of the cell. It is an important component of methylation, which is the process by which a methyl group is added to a molecule. This process can lead to cellular transformation, a process that can cause cancer. 5-Methylcytosine has also been shown as a molecular pathogenesis factor in infectious diseases such as HIV and herpes simplex virus type 1. The presence of 5-methylcytosine in nuclear DNA has been detected by analytical techniques such as gas chromatography/mass spectrometry (GC/MS). There are many analytical methods, including GC/MS, that can be used to detect 5-methylcytosine in cellular nuclei., 554-01-8.

The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives, including the nucleotides cytosine, thymine and uracil, thiamine (vitamin B1) and alloxan. 554-01-8, formula is C5H7N3O, Name is 4-Amino-5-methylpyrimidin-2(1H)-one. It is also found in many synthetic compounds such as barbiturates and the HIV drug, zidovudine. Recommanded Product: 4-Amino-5-methylpyrimidin-2(1H)-one.

Gebrekiristos, Mezgebe;Melson, Joshua;Jiang, Alice;Buckingham, Lela research published 《 DNA methylation and miRNA expression in colon adenomas compared with matched normal colon mucosa and carcinomas》, the research content is summarized as follows. Dysregulation of DNA methylation patterns and non-coding RNA, including miRNAs, has been implicated in colon cancer, and these changes may occur early in the development of carcinoma. In this study, the role of epigenetics as early changes in colon tumorigenesis was examined through paired sample anal. of patient-matched normal, adenoma and carcinoma samples. Global methylation was assessed by genomic 5-Me cytosine (5-mC) and long interspersed nuclear element-1 (LINE-1) promoter methylation by pyrosequencing. KRAS mutations were also assessed by pyrosequencing. Expression of miRNA, specifically, two microRNA genes-miR-200a and let-7c-was analyzed using RT-qPCR. Differences in global methylation in adenomas were not observed, compared with normal tissue. However, LINE-1 methylation was decreased in adenomas (p = .056) and carcinomas (p = .011) compared with normal tissue. Expressions of miRNA, miR-200a and let-7c were significantly higher in adenomas than normal tissues (p = .008 and p = .045 resp.). Thus the significant changes in LINE-1 methylation and microRNA expression in precancerous lesions support an early role for epigenetic changes in the carcinogenic process. Epigenetic characteristics in adenomas may provide potential diagnostic and prognostic therapeutic targets early in cancer development at the adenoma stage.

Recommanded Product: 4-Amino-5-methylpyrimidin-2(1H)-one, 5-Methylcytosine is a methylated form of the nucleobase cytosine occurring predominantly in cytosine-phosphate-guanine (CpG) islands that are produced by DNA methyltransferases and may regulate gene expression. Like cytosine, the DNA sequence containing 5-methylcytosine (5-mC) is able to be replicated without error and 5-mC can pair with guanine in double stranded DNA. However, DNA sequences containing a high local concentration of 5-mC may be less transcriptionally active than areas with higher ratios of unmodified cytosine.
5-Methylcytosine belongs to the class of organic compounds known as hydroxypyrimidines. These are organic compounds containing a hydroxyl group attached to a pyrimidine ring. Pyrimidine is a 6-membered ring consisting of four carbon atoms and two nitrogen centers at the 1- and 3- ring positions. 5-Methylcytosine exists as a solid, slightly soluble (in water), and a very weakly acidic compound (based on its pKa). Within the cell, 5-methylcytosine is primarily located in the cytoplasm. 5-Methylcytosine can be biosynthesized from cytosine. Outside of the human body, 5-methylcytosine can be found in tea. This makes 5-methylcytosine a potential biomarker for the consumption of this food product.
5-methylcytosine is a pyrimidine that is a derivative of cytosine, having a methyl group at the 5-position. It has a role as a human metabolite. It is a member of pyrimidines and a methylcytosine. It derives from a cytosine.
5-Methylcytosine is a nucleic acid that is found in the DNA and RNA of the cell. It is an important component of methylation, which is the process by which a methyl group is added to a molecule. This process can lead to cellular transformation, a process that can cause cancer. 5-Methylcytosine has also been shown as a molecular pathogenesis factor in infectious diseases such as HIV and herpes simplex virus type 1. The presence of 5-methylcytosine in nuclear DNA has been detected by analytical techniques such as gas chromatography/mass spectrometry (GC/MS). There are many analytical methods, including GC/MS, that can be used to detect 5-methylcytosine in cellular nuclei., 554-01-8.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Ge, Yang team published research on European Journal of Medicinal Chemistry in 2018 | 2927-71-1

2927-71-1, 2,4-Dichloro-5-fluoropyrimidine is a useful research compound. Its molecular formula is C4HCl2FN2 and its molecular weight is 166.97 g/mol. The purity is usually 95%.
2,4-Dichloro-5-fluoropyrimidine is an aromatic hydrocarbon that has been shown to inhibit the growth of mouse tumor cells in vitro. It also inhibits the production of amines by reacting with industrial chemicals and sodium carbonate. This compound has potent inhibitory activity against autoimmune diseases and cytotoxic potency on mcf-7 cells. Furthermore, 2,4-Dichloro-5-fluoropyrimidine has been shown to have a chlorinating effect on cancer cells., Related Products of 2927-71-1

The systematic study of pyrimidines began in 1884 with Pinner, who synthesized derivatives by condensing ethyl acetoacetate with amidines. Pinner first proposed the name “pyrimidin” in 1885. 2927-71-1, formula is C4HCl2FN2, Name is 2,4-Dichloro-5-fluoropyrimidine. The parent compound was first prepared by Gabriel and Colman in 1900, by conversion of barbituric acid to 2,4,6-trichloropyrimidine followed by reduction using zinc dust in hot water. Related Products of 2927-71-1.

Ge, Yang;Wang, Changyuan;Song, Shijie;Huang, Jiaxin;Liu, Zhihao;Li, Yongming;Meng, Qiang;Zhang, Jianbin;Yao, Jihong;Liu, Kexin;Ma, Xiaodong;Sun, Xiuli research published 《 Identification of highly potent BTK and JAK3 dual inhibitors with improved activity for the treatment of B-cell lymphoma》, the research content is summarized as follows. The BTK and JAK3 receptor tyrosine kinases are two validated and therapeutically amenable targets in the treatment of B-cell lymphomas. Here the authors report the identification of several classes of pyrimidine derivatives as potent BTK and JAK3 dual inhibitors. Among these mols., approx. two thirds displayed strong inhibitory capacity at less than 10 nM concentration, and four compounds could significantly inhibit the phosphorylation of BTK and JAK3 enzymes at concentrations lower than 1 nM. Addnl., these pyrimidine derivatives also exhibited enhanced activity to block the proliferation of B-cell lymphoma cells compared with the representative BTK inhibitor ibrutinib. In particular, two structure-specific compounds I and II displayed stronger activity than reference agents in cell-based evaluation, with IC50 values lower than 10 μM. Further biol. studies, including flow cytometric anal., and a xenograft model for in vivo evaluation, also indicated their efficacy and low toxicity in the treatment of B-cell lymphoma. These findings provide a new insight for the development of novel anti-B-cell lymphoma drugs with multitarget actions.

2927-71-1, 2,4-Dichloro-5-fluoropyrimidine is a useful research compound. Its molecular formula is C4HCl2FN2 and its molecular weight is 166.97 g/mol. The purity is usually 95%.
2,4-Dichloro-5-fluoropyrimidine is an aromatic hydrocarbon that has been shown to inhibit the growth of mouse tumor cells in vitro. It also inhibits the production of amines by reacting with industrial chemicals and sodium carbonate. This compound has potent inhibitory activity against autoimmune diseases and cytotoxic potency on mcf-7 cells. Furthermore, 2,4-Dichloro-5-fluoropyrimidine has been shown to have a chlorinating effect on cancer cells., Related Products of 2927-71-1

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Ge, Yang team published research on Bioorganic & Medicinal Chemistry in 2017 | 2927-71-1

Related Products of 2927-71-1, 2,4-Dichloro-5-fluoropyrimidine is a useful research compound. Its molecular formula is C4HCl2FN2 and its molecular weight is 166.97 g/mol. The purity is usually 95%.
2,4-Dichloro-5-fluoropyrimidine is an aromatic hydrocarbon that has been shown to inhibit the growth of mouse tumor cells in vitro. It also inhibits the production of amines by reacting with industrial chemicals and sodium carbonate. This compound has potent inhibitory activity against autoimmune diseases and cytotoxic potency on mcf-7 cells. Furthermore, 2,4-Dichloro-5-fluoropyrimidine has been shown to have a chlorinating effect on cancer cells., 2927-71-1.

Pyrimidine is a nitrogenous base similar to benzene (a six-membered ring) and includes cytosine, thymine, and uracil as bases used for DNA or RNA. 2927-71-1, formula is C4HCl2FN2, Name is 2,4-Dichloro-5-fluoropyrimidine. Pyrimidine also found in many synthetic compounds such as barbiturates and the HIV drug, zidovudine. Related Products of 2927-71-1.

Ge, Yang;Yang, Haijun;Wang, Changyuan;Meng, Qiang;Li, Lei;Sun, Huijun;Zhen, Yuhong;Liu, Kexin;Li, Yanxia;Ma, Xiaodong research published 《 Design and synthesis of phosphoryl-substituted diphenylpyrimidines (Pho-DPPYs) as potent Bruton’s tyrosine kinase (BTK) inhibitors: Targeted treatment of B lymphoblastic leukemia cell lines》, the research content is summarized as follows. A family of phosphoryl-substituted diphenylpyrimidine derivatives (Pho-DPPYs) were synthesized and biol. evaluated as potent BTK inhibitors in this study. Compound 7b was found to markedly inhibit BTK activity at concentrations of 0.82 nmol/L, as well as to suppress the proliferations of B-cell leukemia cell lines (Ramos and Raji) expressing high levels of BTK at concentrations of 3.17 μM and 6.69 μM. Moreover, flow cytometry anal. results further indicated that 7b promoted cell apoptosis to a substantial degree. In a word, compound 7b is a promising BTK inhibitor for the treatment of B-cell lymphoblastic leukemia.

Related Products of 2927-71-1, 2,4-Dichloro-5-fluoropyrimidine is a useful research compound. Its molecular formula is C4HCl2FN2 and its molecular weight is 166.97 g/mol. The purity is usually 95%.
2,4-Dichloro-5-fluoropyrimidine is an aromatic hydrocarbon that has been shown to inhibit the growth of mouse tumor cells in vitro. It also inhibits the production of amines by reacting with industrial chemicals and sodium carbonate. This compound has potent inhibitory activity against autoimmune diseases and cytotoxic potency on mcf-7 cells. Furthermore, 2,4-Dichloro-5-fluoropyrimidine has been shown to have a chlorinating effect on cancer cells., 2927-71-1.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Garg, Utsav team published research on RSC Advances in 2021 | 109-12-6

109-12-6, 2-Aminopyrimidine is a useful research compound. Its molecular formula is C4H5N3 and its molecular weight is 95.1 g/mol. The purity is usually 95%.
2-Aminopyrimidine is an organic compound that belongs to the group of pyridines. It has been shown to have antimicrobial, antitumor, and antiviral properties. 2-Aminopyrimidine has been used as a fungicide and herbicide in horticulture and agriculture, respectively. The molecular geometry of this molecule is octahedral with coordination geometry C2v. This chemical binds to the BCR-ABL kinase receptor and inhibits its activity by competitive inhibition of ATP binding. 2-Aminopyrimidine has been shown to have a hematologic response in vivo models and in vitro assays. It also has anti-inflammatory effects when it is taken orally or applied topically., Synthetic Route of 109-12-6

The nomenclature of pyrimidines is straightforward. However, like other heterocyclics, tautomeric hydroxyl groups yield complications since they exist primarily in the cyclic amide form. 109-12-6, formula is C4H5N3, Name is Pyrimidin-2-amine. For example, 2-hydroxypyrimidine is more properly named 2-pyrimidone. A partial list of trivial names of various pyrimidines exists. Synthetic Route of 109-12-6.

Garg, Utsav;Azim, Yasser;Alam, Mahboob research published 《 In acid-aminopyrimidine continuum: experimental and computational studies of furan tetracarboxylate-2-aminopyrimidinium salt》, the research content is summarized as follows. Salts and cocrystals are the two important solid forms when a carboxylic acid crystallizes with an aminopyrimidine base such that the extent of proton transfer distinguishes between them. The ΔpKa value (pKa(base) – pKa(acid)) predicts whether the proton transfer will occur or not. However, the ΔpKa range, 0 < ΔpKa < 3, is elusive where the formation of cocrystal or salt cannot be predicted. The current study has been done to obtain a generalization in this elusive range with the Cambridge Structural Database (CSD). Based on the generalization, a novel salt (FTCA)(2-AP)+ of furantetracarboxylic acid (FTCA) with 2-aminopyrimidine (2-AP) is obtained. The structural confirmation was done by single-crystal X-ray diffraction (SCXRD). D. functional theory (DFT) calculations were performed at the IEF-PCM-B3LYP-D3/6-311G(d,p) level to optimize the geometrical coordinates of salt for frontier MOs (FMOs) and mol. electrostatic potential (MESP). The geometrical parameters of most of the atoms of the optimized salt structure were comparable with SCXRD data. Addnl., results of other computational methods such as ab initio (Hartree-Fock; HF and second-order-Moller-Plesset perturbation; MP2) and semi-empirical were also compared with exptl. results of the salt. Quantum theory of atoms in mols. (QTAIM), reduced d. gradient (RDG), and natural bond orbital (NBO) analyses were done to calculate the strength and nature of non-covalent interactions present in the salt. Furthermore, Hirshfeld surface anal., interaction energy calculations, and total energy frameworks were performed for qual. and quant. estimations of strong and weak intermol. interactions.

109-12-6, 2-Aminopyrimidine is a useful research compound. Its molecular formula is C4H5N3 and its molecular weight is 95.1 g/mol. The purity is usually 95%.
2-Aminopyrimidine is an organic compound that belongs to the group of pyridines. It has been shown to have antimicrobial, antitumor, and antiviral properties. 2-Aminopyrimidine has been used as a fungicide and herbicide in horticulture and agriculture, respectively. The molecular geometry of this molecule is octahedral with coordination geometry C2v. This chemical binds to the BCR-ABL kinase receptor and inhibits its activity by competitive inhibition of ATP binding. 2-Aminopyrimidine has been shown to have a hematologic response in vivo models and in vitro assays. It also has anti-inflammatory effects when it is taken orally or applied topically., Synthetic Route of 109-12-6

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Garg, Utsav team published research on Crystal Growth & Design in 2022 | 109-12-6

Electric Literature of 109-12-6, 2-Aminopyrimidine is a useful research compound. Its molecular formula is C4H5N3 and its molecular weight is 95.1 g/mol. The purity is usually 95%.
2-Aminopyrimidine is an organic compound that belongs to the group of pyridines. It has been shown to have antimicrobial, antitumor, and antiviral properties. 2-Aminopyrimidine has been used as a fungicide and herbicide in horticulture and agriculture, respectively. The molecular geometry of this molecule is octahedral with coordination geometry C2v. This chemical binds to the BCR-ABL kinase receptor and inhibits its activity by competitive inhibition of ATP binding. 2-Aminopyrimidine has been shown to have a hematologic response in vivo models and in vitro assays. It also has anti-inflammatory effects when it is taken orally or applied topically., 109-12-6.

Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. 109-12-6, formula is C4H5N3, Name is Pyrimidin-2-amine. In nucleic acids, three types of nucleobases are pyrimidine derivatives: cytosine (C), thymine (T), and uracil (U). Electric Literature of 109-12-6.

Garg, Utsav;Azim, Yasser;Alam, Mahboob;Kar, Aranya;Pradeep, Chullikkattil P. research published 《 Extensive Analyses on Expanding the Scope of Acid-Aminopyrimidine Synthons for the Design of Molecular Solids》, the research content is summarized as follows. The acid-aminopyrimidine synthon is a well-known robust synthon for cocrystal synthesis that exists both in heterotrimer (HT) and linear heterotetramer (LHT) assemblies. A rational coformer screening methodol. was adopted to predict the HT and LHT for the first time. The Cambridge Structural Database (CSD) and a modified site-pair interaction energy difference (ΔEsite-pair), based on mol. electrostatic potential (MESP), were computed to propose a generalization for better predictability. Based on the generalization, four cocrystals of 4-halobenzoic acid (-F, -Cl, -Br, and -I at the para position of benzoic acid) with 2-aminopyrimidine (2-AP) were predicted and obtained using a neat grinding method. Different characterization methods, viz., Fourier transform IR (FT-IR) spectroscopy, powder X-ray diffraction (XRD), and differential scanning calorimetry (DSC) anal., were used to confirm the formation of cocrystals. Single-crystal XRD was used for structural confirmations. Geometrical coordinates of cocrystals and their ingredients were optimized using d. functional theory (DFT) calculations at the B3LYP-D3/6-311++G(d,p) level for -F-, -Cl-, and -Br-substituted cocrystals and the B3LYP-D3/6-311++G(d,p)/LANL2DZ level for the -I-substituted cocrystal. Extensive computational studies, viz., Frontier MOs (FMOs), MESP values, natural bond orbitals (NBO), quantum theory of atoms in mols. (QTAIM), and reduced d. gradient noncovalent interaction (RDG-NCI) analyses, were done on optimized structures to gain more insights into cocrystals and the effect of halogens on the acid-aminopyrimidine synthon and strength and nature of intermol. interactions present in the cocrystals. Moreover, the strong and weak intermol. interactions present in the crystal structure were examined qual. and quant. using Hirshfeld surface anal. on different parameters, interaction energy calculations, and total energy frameworks.

Electric Literature of 109-12-6, 2-Aminopyrimidine is a useful research compound. Its molecular formula is C4H5N3 and its molecular weight is 95.1 g/mol. The purity is usually 95%.
2-Aminopyrimidine is an organic compound that belongs to the group of pyridines. It has been shown to have antimicrobial, antitumor, and antiviral properties. 2-Aminopyrimidine has been used as a fungicide and herbicide in horticulture and agriculture, respectively. The molecular geometry of this molecule is octahedral with coordination geometry C2v. This chemical binds to the BCR-ABL kinase receptor and inhibits its activity by competitive inhibition of ATP binding. 2-Aminopyrimidine has been shown to have a hematologic response in vivo models and in vitro assays. It also has anti-inflammatory effects when it is taken orally or applied topically., 109-12-6.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Garcia-Garcia, Amalia team published research on Inorganics in 2021 | 109-12-6

Category: pyrimidines, 2-Aminopyrimidine is a useful research compound. Its molecular formula is C4H5N3 and its molecular weight is 95.1 g/mol. The purity is usually 95%.
2-Aminopyrimidine is an organic compound that belongs to the group of pyridines. It has been shown to have antimicrobial, antitumor, and antiviral properties. 2-Aminopyrimidine has been used as a fungicide and herbicide in horticulture and agriculture, respectively. The molecular geometry of this molecule is octahedral with coordination geometry C2v. This chemical binds to the BCR-ABL kinase receptor and inhibits its activity by competitive inhibition of ATP binding. 2-Aminopyrimidine has been shown to have a hematologic response in vivo models and in vitro assays. It also has anti-inflammatory effects when it is taken orally or applied topically., 109-12-6.

Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. One of the three diazines (six-membered heterocyclics with two nitrogen atoms in the ring), it has the nitrogen atoms at positions 1 and 3 in the ring. 109-12-6, formula is C4H5N3, Name is Pyrimidin-2-amine. The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives, including the nucleotides cytosine, thymine and uracil, thiamine (vitamin B1) and alloxan. Category: pyrimidines.

Garcia-Garcia, Amalia;Noriega, Lisset;Melendez-Bustamante, Francisco J.;Castro, Maria Eugenia;Sanchez-Gaytan, Brenda L.;Choquesillo-Lazarte, Duane;Gonzalez-Vergara, Enrique;Rodriguez-Dieguez, Antonio research published 《 2-Aminopyrimidinium Decavanadate: Experimental and Theoretical Characterization, Molecular Docking, and Potential Antineoplastic Activity》, the research content is summarized as follows. The interest in decavanadate anions has increased in recent decades, since these clusters show interesting applications as varied as sensors, batteries, catalysts, or new drugs in medicine. Due to the capacity of the interaction of decavanadate with a variety of biol. mols. because of its high neg. charge and oxygen-rich surface, this cluster is being widely studied both in vitro and in vivo as a treatment for several global health problems such as diabetes mellitus, cancer, and Alzheimer′s disease. Here, we report a new decavanadate compound with organic mols. synthesized in an aqueous solution and structurally characterized by elemental anal., IR spectroscopy, thermogravimetric anal., and single-crystal X-ray diffraction. The decavanadate anion was combined with 2-aminopyrimidine to form the compound [2-ampymH]6[V10O28]·5H2O (1). In the crystal lattice, organic mols. are stacked by π-π interactions, with a centroid-to-centroid distance similar to that shown in DNA or RNA mols. Furthermore, computational DFT calculations of Compound 1 corroborate the hydrogen bond interaction between pyrimidine mols. and decavanadate anions, as well as the π-π stacking interactions between the central pyrimidine mols. Finally, docking studies with test RNA mols. indicate that they could serve as other potential targets for the anticancer activity of decavanadate anion.

Category: pyrimidines, 2-Aminopyrimidine is a useful research compound. Its molecular formula is C4H5N3 and its molecular weight is 95.1 g/mol. The purity is usually 95%.
2-Aminopyrimidine is an organic compound that belongs to the group of pyridines. It has been shown to have antimicrobial, antitumor, and antiviral properties. 2-Aminopyrimidine has been used as a fungicide and herbicide in horticulture and agriculture, respectively. The molecular geometry of this molecule is octahedral with coordination geometry C2v. This chemical binds to the BCR-ABL kinase receptor and inhibits its activity by competitive inhibition of ATP binding. 2-Aminopyrimidine has been shown to have a hematologic response in vivo models and in vitro assays. It also has anti-inflammatory effects when it is taken orally or applied topically., 109-12-6.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Gao, Tai-Heng team published research on Inorganic Chemistry Communications in 2022 | 4595-59-9

Synthetic Route of 4595-59-9, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., 4595-59-9.

The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives, including the nucleotides cytosine, thymine and uracil, thiamine (vitamin B1) and alloxan. 4595-59-9, formula is C4H3BrN2, Name is 5-Bromopyrimidine. It is also found in many synthetic compounds such as barbiturates and the HIV drug, zidovudine. Synthetic Route of 4595-59-9.

Gao, Tai-Heng;Ying Xiong;Guo, Pengfeng;Liu, Feng-Shou;Zhao, Limin research published 《 Rigid α-diimine palladium complexes as direct C-H arylation precatalysts for thiophenes and heteroaryl bromides》, the research content is summarized as follows. The direct C-H heteroarylation of thiophenes, promoted by rigid α-diimine palladium complexes is described. This approach exhibits broad substrate scopes with functional group tolerant, and proceeds with the formation of regioselective products.

Synthetic Route of 4595-59-9, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., 4595-59-9.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia