Lan, Jianyong team published research in Organic & Biomolecular Chemistry in 2022 | 1722-12-9

1722-12-9, 2-Chloropyrimidine is a monochlorinated pyrimidine with plant growth regulating activity. Chloropyrimidine is a useful reagent in the preparation of antivirals and other biologically active compounds.
2-Chloropyrimidine undergoes cobalt-catalyzed cross-coupling reaction with aryl halides.
2-Chloropyrimidine is a molecule that can be synthesized by the oxidation of pyrimidine with hydrogen peroxide and hydrochloric acid. The reaction proceeds through an electrochemical process in which the oxidation catalyst is a platinum electrode. This reaction is catalyzed by the nucleophilic attack of malonic acid on the chloropyrimidine at the methylene group. This efficient method for making 2-chloropyrimidine has been applied to synthesize aryl halides, including phenyl chloropyrimidine and pyridyl chloropyrimidine, from their corresponding chloride and bromide precursors. The fluorescence properties of 2-chloropyrimidine have been studied in coordination chemistry, where it forms complexes with metal ions such as Mn2+. In this study, it was found that adsorption mechanisms are dependent on molecular size, charge density, kinetic energy, and adsorbent surface area., Name: 2-Chloropyrimidine

The nomenclature of pyrimidines is straightforward. However, like other heterocyclics, tautomeric hydroxyl groups yield complications since they exist primarily in the cyclic amide form. 1722-12-9, formula is C4H3ClN2, Name is 2-Chloropyrimidine. For example, 2-hydroxypyrimidine is more properly named 2-pyrimidone. A partial list of trivial names of various pyrimidines exists. Name: 2-Chloropyrimidine.

Lan, Jianyong;Li, Shaoyun;Lin, Kejun;Zhou, Peng;Chen, Weili;Gao, Liqian;Zhu, Tingshun research published 《 The eco-friendly electrosynthesis of trifluoromethylated spirocyclic indolines and their anticancer activity》, the research content is summarized as follows. A method for the electrochem. diastereoselective oxytrifluoromethylation of indoles was developed for the eco-friendly synthesis of CF3-containing spirocyclic indolines. The cascade reaction comprised anodic oxidation to obtain CF3 radicals, the addition of radicals to indoles, and intramol. spirocyclization. The reaction system without external chem. oxidants could easily be scaled up. Antiproliferation assays of these CF3-substituted spirocyclic indolines exhibited their promising activities and selectivities toward several types of cancer cells, including Huh-7, A549, and cisplatin-resistant cancer cells (A549/DDP).

1722-12-9, 2-Chloropyrimidine is a monochlorinated pyrimidine with plant growth regulating activity. Chloropyrimidine is a useful reagent in the preparation of antivirals and other biologically active compounds.
2-Chloropyrimidine undergoes cobalt-catalyzed cross-coupling reaction with aryl halides.
2-Chloropyrimidine is a molecule that can be synthesized by the oxidation of pyrimidine with hydrogen peroxide and hydrochloric acid. The reaction proceeds through an electrochemical process in which the oxidation catalyst is a platinum electrode. This reaction is catalyzed by the nucleophilic attack of malonic acid on the chloropyrimidine at the methylene group. This efficient method for making 2-chloropyrimidine has been applied to synthesize aryl halides, including phenyl chloropyrimidine and pyridyl chloropyrimidine, from their corresponding chloride and bromide precursors. The fluorescence properties of 2-chloropyrimidine have been studied in coordination chemistry, where it forms complexes with metal ions such as Mn2+. In this study, it was found that adsorption mechanisms are dependent on molecular size, charge density, kinetic energy, and adsorbent surface area., Name: 2-Chloropyrimidine

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Lai, Samson team published research in Tetrahedron Letters in 2021 | 4595-59-9

4595-59-9, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., Related Products of 4595-59-9

Pyrimidine is a nitrogenous base similar to benzene (a six-membered ring) and includes cytosine, thymine, and uracil as bases used for DNA or RNA. 4595-59-9, formula is C4H3BrN2, Name is 5-Bromopyrimidine. Pyrimidine also found in many synthetic compounds such as barbiturates and the HIV drug, zidovudine. Related Products of 4595-59-9.

Lai, Samson;Takaesu, Noah;Lin, Wen Xuan;Perrin, David M. research published 《 Suzuki coupling of aroyl-MIDA boronate esters – A preliminary report on scope and limitations》, the research content is summarized as follows. The production of benzophenones by C-C cross coupling between a benzoyl-MIDA boronate ester and a multitude of aryl bromide substrates in adequate yields following optimization under ambient conditions outside of a glove box were reported. Under these standard conditions, none of several acyl-MIDA boronate esters (in an alkyl series) served as a competent coupling partner. The substrate scope was also limited by the finding that the corresponding trifluoroborates of both acyl- and aroyltrifluroborates were not suitable substrates. For reasons of availability and synthetic difficulty in procuring other aroyl-MIDA boronates, this preliminary study examined the reactivity of benzoyl-MIDA boronate with several aryl bromide substrates.

4595-59-9, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., Related Products of 4595-59-9

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Kyriakopoulos, Charalampos team published research in Cells Reports Methods in 2022 | 554-01-8

SDS of cas: 554-01-8, 5-Methylcytosine is a methylated form of the nucleobase cytosine occurring predominantly in cytosine-phosphate-guanine (CpG) islands that are produced by DNA methyltransferases and may regulate gene expression. Like cytosine, the DNA sequence containing 5-methylcytosine (5-mC) is able to be replicated without error and 5-mC can pair with guanine in double stranded DNA. However, DNA sequences containing a high local concentration of 5-mC may be less transcriptionally active than areas with higher ratios of unmodified cytosine.
5-Methylcytosine belongs to the class of organic compounds known as hydroxypyrimidines. These are organic compounds containing a hydroxyl group attached to a pyrimidine ring. Pyrimidine is a 6-membered ring consisting of four carbon atoms and two nitrogen centers at the 1- and 3- ring positions. 5-Methylcytosine exists as a solid, slightly soluble (in water), and a very weakly acidic compound (based on its pKa). Within the cell, 5-methylcytosine is primarily located in the cytoplasm. 5-Methylcytosine can be biosynthesized from cytosine. Outside of the human body, 5-methylcytosine can be found in tea. This makes 5-methylcytosine a potential biomarker for the consumption of this food product.
5-methylcytosine is a pyrimidine that is a derivative of cytosine, having a methyl group at the 5-position. It has a role as a human metabolite. It is a member of pyrimidines and a methylcytosine. It derives from a cytosine.
5-Methylcytosine is a nucleic acid that is found in the DNA and RNA of the cell. It is an important component of methylation, which is the process by which a methyl group is added to a molecule. This process can lead to cellular transformation, a process that can cause cancer. 5-Methylcytosine has also been shown as a molecular pathogenesis factor in infectious diseases such as HIV and herpes simplex virus type 1. The presence of 5-methylcytosine in nuclear DNA has been detected by analytical techniques such as gas chromatography/mass spectrometry (GC/MS). There are many analytical methods, including GC/MS, that can be used to detect 5-methylcytosine in cellular nuclei., 554-01-8.

The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives, including the nucleotides cytosine, thymine and uracil, thiamine (vitamin B1) and alloxan. 554-01-8, formula is C5H7N3O, Name is 4-Amino-5-methylpyrimidin-2(1H)-one. It is also found in many synthetic compounds such as barbiturates and the HIV drug, zidovudine. SDS of cas: 554-01-8.

Kyriakopoulos, Charalampos;Nordstroem, Karl;Kramer, Paula Linh;Gottfreund, Judith Yumiko;Salhab, Abdulrahman;Arand, Julia;Mueller, Fabian;von Meyenn, Ferdinand;Ficz, Gabriella;Reik, Wolf;Wolf, Verena;Walter, Joern;Giehr, Pascal research published 《 A comprehensive approach for genome-wide efficiency profiling of DNA modifying enzymes》, the research content is summarized as follows. A precise understanding of DNA methylation dynamics is of great importance for a variety of biol. processes including cellular reprogramming and differentiation. To date, complex integration of multiple and distinct genome-wide datasets is required to realize this task. We present GwEEP (genome-wide epigenetic efficiency profiling) a versatile approach to infer dynamic efficiencies of DNA modifying enzymes. GwEEP relies on genome-wide hairpin datasets, which are translated by a hidden Markov model into quant. enzyme efficiencies with reported confidence around the estimates GwEEP predicts de novo and maintenance methylation efficiencies of Dnmts and furthermore the hydroxylation efficiency of Tets. Its design also allows capturing further oxidation processes given available data. We show that GwEEP predicts accurately the epigenetic changes of ESCs following a Serum-to-2i shift and applied to Tet TKO cells confirms the hypothesized mutual interference between Dnmts and Tets.

SDS of cas: 554-01-8, 5-Methylcytosine is a methylated form of the nucleobase cytosine occurring predominantly in cytosine-phosphate-guanine (CpG) islands that are produced by DNA methyltransferases and may regulate gene expression. Like cytosine, the DNA sequence containing 5-methylcytosine (5-mC) is able to be replicated without error and 5-mC can pair with guanine in double stranded DNA. However, DNA sequences containing a high local concentration of 5-mC may be less transcriptionally active than areas with higher ratios of unmodified cytosine.
5-Methylcytosine belongs to the class of organic compounds known as hydroxypyrimidines. These are organic compounds containing a hydroxyl group attached to a pyrimidine ring. Pyrimidine is a 6-membered ring consisting of four carbon atoms and two nitrogen centers at the 1- and 3- ring positions. 5-Methylcytosine exists as a solid, slightly soluble (in water), and a very weakly acidic compound (based on its pKa). Within the cell, 5-methylcytosine is primarily located in the cytoplasm. 5-Methylcytosine can be biosynthesized from cytosine. Outside of the human body, 5-methylcytosine can be found in tea. This makes 5-methylcytosine a potential biomarker for the consumption of this food product.
5-methylcytosine is a pyrimidine that is a derivative of cytosine, having a methyl group at the 5-position. It has a role as a human metabolite. It is a member of pyrimidines and a methylcytosine. It derives from a cytosine.
5-Methylcytosine is a nucleic acid that is found in the DNA and RNA of the cell. It is an important component of methylation, which is the process by which a methyl group is added to a molecule. This process can lead to cellular transformation, a process that can cause cancer. 5-Methylcytosine has also been shown as a molecular pathogenesis factor in infectious diseases such as HIV and herpes simplex virus type 1. The presence of 5-methylcytosine in nuclear DNA has been detected by analytical techniques such as gas chromatography/mass spectrometry (GC/MS). There are many analytical methods, including GC/MS, that can be used to detect 5-methylcytosine in cellular nuclei., 554-01-8.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Kwak, Minjoon team published research in Chemical Science in 2022 | 4595-59-9

COA of Formula: C4H3BrN2, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., 4595-59-9.

Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. 4595-59-9, formula is C4H3BrN2, Name is 5-Bromopyrimidine. In nucleic acids, three types of nucleobases are pyrimidine derivatives: cytosine (C), thymine (T), and uracil (U). COA of Formula: C4H3BrN2.

Kwak, Minjoon;Bok, Jinsol;Lee, Byoung-Hoon;Kim, Jongchan;Seo, Youngran;Kim, Sumin;Choi, Hyunwoo;Ko, Wonjae;Hooch Antink, Wytse;Lee, Chan Woo;Yim, Guk Hee;Seung, Hyojin;Park, Chansul;Lee, Kug-Seung;Kim, Dae-Hyeong;Hyeon, Taeghwan;Yoo, Dongwon research published 《 Ni single atoms on carbon nitride for visible-light-promoted full heterogeneous dual catalysis》, the research content is summarized as follows. Visible-light-driven organic transformations are of great interest in synthesizing valuable fine chems. under mild conditions. The merger of heterogeneous photocatalysts and transition metal catalysts has recently drawn much attention due to its versatility for organic transformations. However, these semi-heterogenous systems suffered several drawbacks, such as transition metal agglomeration on the heterogeneous surface, hindering further applications. Here, we introduce heterogeneous single Ni atoms supported on carbon nitride (NiSAC/CN) for visible-light-driven C-N functionalization with a broad substrate scope. Compared to a semi-heterogeneous system, high activity and stability were observed due to metal-support interactions. Furthermore, through systematic exptl. mechanistic studies, we demonstrate that the stabilized single Ni atoms on CN effectively change their redox states, leading to a complete photoredox cycle for C-N coupling.

COA of Formula: C4H3BrN2, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., 4595-59-9.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Kunikawa, Shigeki team published research in Bioorganic & Medicinal Chemistry in 2015 | 2927-71-1

2927-71-1, 2,4-Dichloro-5-fluoropyrimidine is a useful research compound. Its molecular formula is C4HCl2FN2 and its molecular weight is 166.97 g/mol. The purity is usually 95%.
2,4-Dichloro-5-fluoropyrimidine is an aromatic hydrocarbon that has been shown to inhibit the growth of mouse tumor cells in vitro. It also inhibits the production of amines by reacting with industrial chemicals and sodium carbonate. This compound has potent inhibitory activity against autoimmune diseases and cytotoxic potency on mcf-7 cells. Furthermore, 2,4-Dichloro-5-fluoropyrimidine has been shown to have a chlorinating effect on cancer cells., Recommanded Product: 2,4-Dichloro-5-fluoropyrimidine

The nomenclature of pyrimidines is straightforward. However, like other heterocyclics, tautomeric hydroxyl groups yield complications since they exist primarily in the cyclic amide form. 2927-71-1, formula is C4HCl2FN2, Name is 2,4-Dichloro-5-fluoropyrimidine. For example, 2-hydroxypyrimidine is more properly named 2-pyrimidone. A partial list of trivial names of various pyrimidines exists. Recommanded Product: 2,4-Dichloro-5-fluoropyrimidine.

Kunikawa, Shigeki;Tanaka, Akira;Mukoyoshi, Koichiro;Nagashima, Shinya;Tominaga, Hiroaki;Chida, Noboru;Tasaki, Mamoru;Shirai, Fumiyuki research published 《 Optimization of 2,4-diamino-5-fluoropyrimidine derivatives as protein kinase C theta inhibitors with mitigated time-dependent drug-drug interactions and P-gp liability》, the research content is summarized as follows. Protein kinase C theta (PKCθ) plays a critical role in T cell signaling and has therapeutic potential for T cell-mediated diseases such as transplant rejection and rheumatoid arthritis. Here, a series of 2,4-diamino-5-fluoropyrimidine derivatives were prepared and evaluated for their inhibition of PKCθ. Of these compounds, 14f was found to exhibit potent PKCθ inhibitory activity and significantly weak CYP3A4 time-dependent inhibition (TDI) and P-glycoprotein (P-gp) liability.

2927-71-1, 2,4-Dichloro-5-fluoropyrimidine is a useful research compound. Its molecular formula is C4HCl2FN2 and its molecular weight is 166.97 g/mol. The purity is usually 95%.
2,4-Dichloro-5-fluoropyrimidine is an aromatic hydrocarbon that has been shown to inhibit the growth of mouse tumor cells in vitro. It also inhibits the production of amines by reacting with industrial chemicals and sodium carbonate. This compound has potent inhibitory activity against autoimmune diseases and cytotoxic potency on mcf-7 cells. Furthermore, 2,4-Dichloro-5-fluoropyrimidine has been shown to have a chlorinating effect on cancer cells., Recommanded Product: 2,4-Dichloro-5-fluoropyrimidine

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Kumar, Jogendra team published research in Journal of Organic Chemistry in 2022 | 109-12-6

Product Details of C4H5N3, 2-Aminopyrimidine is a useful research compound. Its molecular formula is C4H5N3 and its molecular weight is 95.1 g/mol. The purity is usually 95%.
2-Aminopyrimidine is an organic compound that belongs to the group of pyridines. It has been shown to have antimicrobial, antitumor, and antiviral properties. 2-Aminopyrimidine has been used as a fungicide and herbicide in horticulture and agriculture, respectively. The molecular geometry of this molecule is octahedral with coordination geometry C2v. This chemical binds to the BCR-ABL kinase receptor and inhibits its activity by competitive inhibition of ATP binding. 2-Aminopyrimidine has been shown to have a hematologic response in vivo models and in vitro assays. It also has anti-inflammatory effects when it is taken orally or applied topically., 109-12-6.

The systematic study of pyrimidines began in 1884 with Pinner, who synthesized derivatives by condensing ethyl acetoacetate with amidines. Pinner first proposed the name “pyrimidin” in 1885. 109-12-6, formula is C4H5N3, Name is Pyrimidin-2-amine. The parent compound was first prepared by Gabriel and Colman in 1900, by conversion of barbituric acid to 2,4,6-trichloropyrimidine followed by reduction using zinc dust in hot water. Product Details of C4H5N3.

Kumar, Jogendra;Singh, Anupam Kumar;Gupta, Aniket;Bhadra, Sukalyan research published 《 Enhancing the Extent of Enolization for α-C-H Bonds of Aliphatic Carboxylic Acid Equivalents via Ion Pair Catalysis: Application toward α-Chalcogenation》, the research content is summarized as follows. In general, the α-functionalization of carboxylic acid derivatives RCH2C(O)NHR1 [R = Me, n-Bu, Ph, 3-thienyl, etc.; R1 = pyridin-2-yl, 4-Methylpyridin-2-yl, pyrimidin-2-yl, etc.] requires either a transition metal catalyst or a stoichiometric activating agent/strong base/external additive. A transition metal free α-chalcogenation of aliphatic carboxylic acid equivalent was reported via ion pair formation using K3PO4 as a catalyst. Mild conditions, broad scope, scalability of the process, attaining bioactive glucokinase activators, and some synthetic intermediates establish merits of the strategy.

Product Details of C4H5N3, 2-Aminopyrimidine is a useful research compound. Its molecular formula is C4H5N3 and its molecular weight is 95.1 g/mol. The purity is usually 95%.
2-Aminopyrimidine is an organic compound that belongs to the group of pyridines. It has been shown to have antimicrobial, antitumor, and antiviral properties. 2-Aminopyrimidine has been used as a fungicide and herbicide in horticulture and agriculture, respectively. The molecular geometry of this molecule is octahedral with coordination geometry C2v. This chemical binds to the BCR-ABL kinase receptor and inhibits its activity by competitive inhibition of ATP binding. 2-Aminopyrimidine has been shown to have a hematologic response in vivo models and in vitro assays. It also has anti-inflammatory effects when it is taken orally or applied topically., 109-12-6.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Kumar, Gulshan team published research in Bioorganic & Medicinal Chemistry in 2022 | 109-12-6

109-12-6, 2-Aminopyrimidine is a useful research compound. Its molecular formula is C4H5N3 and its molecular weight is 95.1 g/mol. The purity is usually 95%.
2-Aminopyrimidine is an organic compound that belongs to the group of pyridines. It has been shown to have antimicrobial, antitumor, and antiviral properties. 2-Aminopyrimidine has been used as a fungicide and herbicide in horticulture and agriculture, respectively. The molecular geometry of this molecule is octahedral with coordination geometry C2v. This chemical binds to the BCR-ABL kinase receptor and inhibits its activity by competitive inhibition of ATP binding. 2-Aminopyrimidine has been shown to have a hematologic response in vivo models and in vitro assays. It also has anti-inflammatory effects when it is taken orally or applied topically., Product Details of C4H5N3

Pyrimidine is a nitrogenous base similar to benzene (a six-membered ring) and includes cytosine, thymine, and uracil as bases used for DNA or RNA. 109-12-6, formula is C4H5N3, Name is Pyrimidin-2-amine. Pyrimidine also found in many synthetic compounds such as barbiturates and the HIV drug, zidovudine. Product Details of C4H5N3.

Kumar, Gulshan;Das, Chinmay;Acharya, Ayan;Bhal, Subhasmita;Joshi, Mayank;Kundu, Chanakya Nath;Choudhury, Angshuman Roy;Guchhait, Sankar K. research published 《 Organocatalyzed umpolung addition for synthesis of heterocyclic-fused arylidene-imidazolones as anticancer agents》, the research content is summarized as follows. An organocatalyzed umpolung chem. based method was established for mol.-diversity feasible synthesis of title class of chemotypes i.e. (Z)-2-Arylideneimidazo[1,2-a]pyridinones I [R1 = H, 6-OH, 7-Me, etc.; R2 = H, 4-Cl, 4-OMe, etc.] and (Z)-2-arylidenebenzo[d]imidazo[2,1-b]thiazol-3-ones such as II [R1 = H, 5-Me, 5-OH, etc.; R2 = H, 4-Cl, 4-OMe, etc.]. The analogs I showed characteristic anticancer activities with efficiency more than an anticancer drug. The compounds II [R1 = 5-OMe, R2 = H] and II [R1 = 5-OH, R2 = 4-Cl] showed enhanced apoptosis by arresting the cells in the S phase and up/down-regulation of various apoptotic proteins. The compounds’ significant effect in up/down-regulation of various apoptotic proteins, an apoptosis cascade, and the inhibition of topoisomerases-mediated DNA relaxation process was identified. The anal. of the structure-activity relationship, interference with biol. events and the drug-likeness physicochem. properties of the compounds I and II in the acceptable window indicated distinctive medicinal mol.-to-properties of the investigated chemotypes.

109-12-6, 2-Aminopyrimidine is a useful research compound. Its molecular formula is C4H5N3 and its molecular weight is 95.1 g/mol. The purity is usually 95%.
2-Aminopyrimidine is an organic compound that belongs to the group of pyridines. It has been shown to have antimicrobial, antitumor, and antiviral properties. 2-Aminopyrimidine has been used as a fungicide and herbicide in horticulture and agriculture, respectively. The molecular geometry of this molecule is octahedral with coordination geometry C2v. This chemical binds to the BCR-ABL kinase receptor and inhibits its activity by competitive inhibition of ATP binding. 2-Aminopyrimidine has been shown to have a hematologic response in vivo models and in vitro assays. It also has anti-inflammatory effects when it is taken orally or applied topically., Product Details of C4H5N3

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Kumar, C. B. Pradeep team published research in Journal of Molecular Liquids in 2020 | 2927-71-1

Application of C4HCl2FN2, 2,4-Dichloro-5-fluoropyrimidine is a useful research compound. Its molecular formula is C4HCl2FN2 and its molecular weight is 166.97 g/mol. The purity is usually 95%.
2,4-Dichloro-5-fluoropyrimidine is an aromatic hydrocarbon that has been shown to inhibit the growth of mouse tumor cells in vitro. It also inhibits the production of amines by reacting with industrial chemicals and sodium carbonate. This compound has potent inhibitory activity against autoimmune diseases and cytotoxic potency on mcf-7 cells. Furthermore, 2,4-Dichloro-5-fluoropyrimidine has been shown to have a chlorinating effect on cancer cells., 2927-71-1.

Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. One of the three diazines (six-membered heterocyclics with two nitrogen atoms in the ring), it has the nitrogen atoms at positions 1 and 3 in the ring. 2927-71-1, formula is C4HCl2FN2, Name is 2,4-Dichloro-5-fluoropyrimidine. The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives, including the nucleotides cytosine, thymine and uracil, thiamine (vitamin B1) and alloxan. Application of C4HCl2FN2.

Kumar, C. B. Pradeep;Mohana, K. N.;Raghu, M. S.;Jagadeesha, M. B.;Prashanth, M. K.;Lokanath, N. K.;Mahesha research published 《 Fluorine substituted thiomethyl pyrimidine derivatives as efficient inhibitors for mild steel corrosion in hydrochloric acid solution: Thermodynamic, electrochemical and DFT studies》, the research content is summarized as follows. Three new 5-fluoro-2- methylthio substituted pyrimidine derivatives have been synthesized and characterized by 1H NMR spectroscopy and Mass spectrometry. Corrosion inhibition characteristics of the synthesized pyrimidine derivatives have been studied on mild steel (MS) in 0.5 M hydrochloric acid solution at various temperatures (303-333 K) using mass loss and electrochem. techniques. The obtained weight loss, electrochem. impedance and potentiodynamic polarization data indicate that the corrosion inhibition efficiency is directly proportional to concentration of the inhibitors. The Adsorption process on MS surface obeyed Langmuir isotherm model. SEM (SEM) was used to characterize surface morphol. of the MS specimen in absence and presence of pyrimidine derivatives D. functional theory (DFT) calculations using B3LYP functional with 6-311+G (d,p) level was used to establish the relationship between mol. structure and corrosion inhibition efficiency. Electrochem. anal. indicated that pyrimidine derivatives inhibit the corrosion by adsorbing on the metal surface. Mixed-type of corrosion inhibition activity with anodic predominance was proposed by polarization studies.

Application of C4HCl2FN2, 2,4-Dichloro-5-fluoropyrimidine is a useful research compound. Its molecular formula is C4HCl2FN2 and its molecular weight is 166.97 g/mol. The purity is usually 95%.
2,4-Dichloro-5-fluoropyrimidine is an aromatic hydrocarbon that has been shown to inhibit the growth of mouse tumor cells in vitro. It also inhibits the production of amines by reacting with industrial chemicals and sodium carbonate. This compound has potent inhibitory activity against autoimmune diseases and cytotoxic potency on mcf-7 cells. Furthermore, 2,4-Dichloro-5-fluoropyrimidine has been shown to have a chlorinating effect on cancer cells., 2927-71-1.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Kumada, Kengo team published research in Chemical Engineering Journal (Amsterdam, Netherlands) in 2022 | 4595-59-9

4595-59-9, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., Related Products of 4595-59-9

Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. 4595-59-9, formula is C4H3BrN2, Name is 5-Bromopyrimidine. In nucleic acids, three types of nucleobases are pyrimidine derivatives: cytosine (C), thymine (T), and uracil (U). Related Products of 4595-59-9.

Kumada, Kengo;Sasabe, Hisahiro;Nakao, Kohei;Matsuya, Misaki;Noda, Taito;Arai, Hiroki;Kido, Junji research published 《 Controlling the electronic structures of triphenylene based sky blue TADF emitters by chemical modifications for high efficiency with shorter emission lifetimes》, the research content is summarized as follows. Chem. modified triphenylene derivatives are one of the attractive candidates as an acceptor unit for realizing efficient blue thermally activated delayed fluorescence (TADF) emitters due to the rigid structure and the high triplet energy of 2.9 eV however, only a limited number of examples with low external quantum efficiency (EQE) below 10% are reported to date. Here, we developed three types of blue TADF emitters based on modified triphenylene acceptor units. These emitters showed sky blue emission with the emission peak wavelength around 470 nm, high photoluminescent quantum yield (PLQY) of ∼88%, and a short delayed lifetime (τd) of ∼7.7 μs. These emitters realized efficient sky blue organic light-emitting device with high EQE of over 20%.

4595-59-9, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., Related Products of 4595-59-9

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Kuhn, Bernd team published research in Journal of Medicinal Chemistry in 2017 | 2927-71-1

2927-71-1, 2,4-Dichloro-5-fluoropyrimidine is a useful research compound. Its molecular formula is C4HCl2FN2 and its molecular weight is 166.97 g/mol. The purity is usually 95%.
2,4-Dichloro-5-fluoropyrimidine is an aromatic hydrocarbon that has been shown to inhibit the growth of mouse tumor cells in vitro. It also inhibits the production of amines by reacting with industrial chemicals and sodium carbonate. This compound has potent inhibitory activity against autoimmune diseases and cytotoxic potency on mcf-7 cells. Furthermore, 2,4-Dichloro-5-fluoropyrimidine has been shown to have a chlorinating effect on cancer cells., Formula: C4HCl2FN2

Pyrimidine is a nitrogenous base similar to benzene (a six-membered ring) and includes cytosine, thymine, and uracil as bases used for DNA or RNA. 2927-71-1, formula is C4HCl2FN2, Name is 2,4-Dichloro-5-fluoropyrimidine. Pyrimidine also found in many synthetic compounds such as barbiturates and the HIV drug, zidovudine. Formula: C4HCl2FN2.

Kuhn, Bernd;Tichy, Michal;Wang, Lingle;Robinson, Shaughnessy;Martin, Rainer E.;Kuglstatter, Andreas;Benz, Jorg;Giroud, Maude;Schirmeister, Tanja;Abel, Robert;Diederich, Francois;Hert, Jerome research published 《 Prospective Evaluation of Free Energy Calculations for the Prioritization of Cathepsin L Inhibitors》, the research content is summarized as follows. Improving the binding affinity of a chem. series by systematically probing one of its exit vectors is a medicinal chem. activity that can benefit from mol. modeling input. Herein, the authors compare the effectiveness of four approaches in prioritizing building blocks with better potency: selection by a medicinal chemist, manual modeling, docking followed by manual filtering, and free energy calculations (FEP). The authors’ study focused on identifying novel substituents for the apolar S2 pocket of cathepsin L and was conducted entirely in a prospective manner with synthesis and activity determination of 36 novel compounds The authors found that FEP selected compounds with improved affinity for 8 out of 10 picks compared to 1 out of 10 for the other approaches. From this result and other addnl. analyses, the authors conclude that FEP can be a useful approach to guide this type of medicinal chem. optimization once it has been validated for the system under consideration.

2927-71-1, 2,4-Dichloro-5-fluoropyrimidine is a useful research compound. Its molecular formula is C4HCl2FN2 and its molecular weight is 166.97 g/mol. The purity is usually 95%.
2,4-Dichloro-5-fluoropyrimidine is an aromatic hydrocarbon that has been shown to inhibit the growth of mouse tumor cells in vitro. It also inhibits the production of amines by reacting with industrial chemicals and sodium carbonate. This compound has potent inhibitory activity against autoimmune diseases and cytotoxic potency on mcf-7 cells. Furthermore, 2,4-Dichloro-5-fluoropyrimidine has been shown to have a chlorinating effect on cancer cells., Formula: C4HCl2FN2

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia