Quality Control of 65-86-1, Orotic acid anhydrous is a hydrogen bonding interaction that can be found in biological systems. It plays a role in the physiological effects of orotic acid, which is a metabolite of uridine and an intermediate in the synthesis of pyrimidine nucleotides. Orotic acid has antimicrobial properties and has been shown to inhibit enzyme activities involved in energy metabolism, such as polymerase chain reaction (PCR) and adenosine triphosphate (ATP) synthase. Orotic acid also inhibits the growth of bacteria, fungi, and parasites. Orotic acid anhydrous is used for treating myocardial infarcts or brain functions. The untreated group was given no treatment at all.
Orotic acid, also known as orotate or orotsaeure, belongs to the class of organic compounds known as pyrimidinecarboxylic acids. These are pyrimidines with a structure containing a carboxyl group attached to the pyrimidine ring. Orotic acid exists as a solid, slightly soluble (in water), and a moderately acidic compound (based on its pKa). Orotic acid has been found in human liver and pancreas tissues, and has also been primarily detected in saliva, feces, urine, and blood. Within the cell, orotic acid is primarily located in the cytoplasm and mitochondria. Orotic acid exists in all eukaryotes, ranging from yeast to humans. Orotic acid participates in a number of enzymatic reactions. In particular, Orotic acid can be biosynthesized from L-dihydroorotic acid and quinone; which is mediated by the enzyme dihydroorotate dehydrogenase (quinone), mitochondrial. In addition, Orotic acid and phosphoribosyl pyrophosphate can be converted into orotidylic acid through its interaction with the enzyme uridine monophosphate synthetase isoform a. In humans, orotic acid is involved in the pyrimidine metabolism pathway. Orotic acid is also involved in several metabolic disorders, some of which include the mngie (mitochondrial neurogastrointestinal encephalopathy) pathway, dihydropyrimidinase deficiency, UMP synthase deficiency (orotic aciduria), and Beta ureidopropionase deficiency. Outside of the human body, orotic acid can be found in a number of food items such as green vegetables, alaska blueberry, chickpea, and colorado pinyon. This makes orotic acid a potential biomarker for the consumption of these food products. Orotic acid is a potentially toxic compound. Orotic acid has been found to be associated with several diseases known as phosphoenolpyruvate carboxykinase deficiency 1, cytosolic and hyperornithinemia-hyperammonemia-homocitrullinuria; orotic acid has also been linked to several inborn metabolic disorders including n-acetylglutamate synthetase deficiency, lysinuric protein intolerance, and ornithine transcarbamylase deficiency.
Orotic acid appears as white crystals or crystalline powder.
Orotic acid is a pyrimidinemonocarboxylic acid that is uracil bearing a carboxy substituent at position C-6. It has a role as a metabolite, an Escherichia coli metabolite and a mouse metabolite. It derives from a uracil. It is a conjugate acid of an orotate., 65-86-1.
The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives, including the nucleotides cytosine, thymine and uracil, thiamine (vitamin B1) and alloxan. 65-86-1, formula is C5H4N2O4, Name is 2,6-Dioxo-1,2,3,6-tetrahydropyrimidine-4-carboxylic acid. It is also found in many synthetic compounds such as barbiturates and the HIV drug, zidovudine. Quality Control of 65-86-1.
Kim, Hyung Joon;Kim, Ju Hyun;Yeon, Jong Eun;Seo, Yeon Seok;Jang, Jeong Won;Cho, Yong Kyun;Jang, Byoung Kuk;Han, Byung Hoon;Lee, Changhyeong;Lee, Joon Hyeok;Yoon, Jung-Hwan;Kim, Kang Mo;Kim, Moon Young;Kim, Do Young;Park, Neung Hwa;Cho, Eun Young;Lee, June Sung;Lee, Jin-Woo;Kim, In Hee;Song, Byung-Cheol;Lee, Byung-Seok;Kwon, Oh Sang research published 《 A multi-center, double-blind randomized controlled phase III clinical trial to evaluate the antiviral activity and safety of DA-2802 (tenofovir disoproxil orotate) and viread (tenofovir disoproxil fumarate) in chronic hepatitis b patients》, the research content is summarized as follows. Background: Tenofovir disoproxil fumarate (TDF, Viread) had been used as a standard treatment option of chronic hepatitis B (CHB). This clin. trial was conducted to evaluate the efficacy and safety of DA-2802 (tenofovir disoproxil orotate) compared to TDF. Methods: The present study was a double blind randomized controlled trial. Patients with CHB were recruited from 25 hospitals in Korea and given DA-2802 at a dose of 319 mg once daily or Viread at a dose of 300 mg once daily for 48 wk from March 2017 to Jan. 2019. Change in hepatitis B virus (HBV) DNA level at week 48 after dosing compared to baseline was the primary efficacy endpoint. Secondary efficacy endpoints were proportions of subjects with undetectable HBV DNA, those with normal alanine aminotransferase (ALT) levels, and those with loss of hepatitis B envelop antigen (HBeAg), those with loss of hepatitis B surface antigen (HBsAg). Adverse events (AEs) were also investigated. Results: A total of 122 patients (DA-2802 group: n = 61, Viread group: n = 61) were used as full anal. set for efficacy anal. Mean age, proportion of males, laboratory results and virol. characteristics were not different between the two groups. The change in HBV DNA level at week 48 from baseline was -5.13 ± 1.40 in the DA-2802 group and -4.97 ± 1.40 log10 copies/mL in the Viread group. The anal. of primary endpoint using the nonparametric anal. of covariance showed statistically significant results (P < 0.001), which confirmed non-inferiority of DA-2802 to Viread by a prespecified noninferiority margin of 1. The proportion of undetectable HBV DNA was 78.7% in the DA-2802 group and 75.4% in the Viread group (P = 0.698). The proportion of subjects who had normal ALT levels was 75.4% in the DA-2802 group and 73.3% in the Viread group (P = 0.795). The proportion of those with HBeAg loss was 8.1% in the DA-2802 group and 10.8% in the Viread group (P = 1.000). No subject showed HBsAg loss. The frequency of AEs during treatment was similar between the two groups. Most AEs were mild to moderate in severity. Conclusion: DA-2802 is considered an effective and safe treatment for patients with CHB.
Quality Control of 65-86-1, Orotic acid anhydrous is a hydrogen bonding interaction that can be found in biological systems. It plays a role in the physiological effects of orotic acid, which is a metabolite of uridine and an intermediate in the synthesis of pyrimidine nucleotides. Orotic acid has antimicrobial properties and has been shown to inhibit enzyme activities involved in energy metabolism, such as polymerase chain reaction (PCR) and adenosine triphosphate (ATP) synthase. Orotic acid also inhibits the growth of bacteria, fungi, and parasites. Orotic acid anhydrous is used for treating myocardial infarcts or brain functions. The untreated group was given no treatment at all.
Orotic acid, also known as orotate or orotsaeure, belongs to the class of organic compounds known as pyrimidinecarboxylic acids. These are pyrimidines with a structure containing a carboxyl group attached to the pyrimidine ring. Orotic acid exists as a solid, slightly soluble (in water), and a moderately acidic compound (based on its pKa). Orotic acid has been found in human liver and pancreas tissues, and has also been primarily detected in saliva, feces, urine, and blood. Within the cell, orotic acid is primarily located in the cytoplasm and mitochondria. Orotic acid exists in all eukaryotes, ranging from yeast to humans. Orotic acid participates in a number of enzymatic reactions. In particular, Orotic acid can be biosynthesized from L-dihydroorotic acid and quinone; which is mediated by the enzyme dihydroorotate dehydrogenase (quinone), mitochondrial. In addition, Orotic acid and phosphoribosyl pyrophosphate can be converted into orotidylic acid through its interaction with the enzyme uridine monophosphate synthetase isoform a. In humans, orotic acid is involved in the pyrimidine metabolism pathway. Orotic acid is also involved in several metabolic disorders, some of which include the mngie (mitochondrial neurogastrointestinal encephalopathy) pathway, dihydropyrimidinase deficiency, UMP synthase deficiency (orotic aciduria), and Beta ureidopropionase deficiency. Outside of the human body, orotic acid can be found in a number of food items such as green vegetables, alaska blueberry, chickpea, and colorado pinyon. This makes orotic acid a potential biomarker for the consumption of these food products. Orotic acid is a potentially toxic compound. Orotic acid has been found to be associated with several diseases known as phosphoenolpyruvate carboxykinase deficiency 1, cytosolic and hyperornithinemia-hyperammonemia-homocitrullinuria; orotic acid has also been linked to several inborn metabolic disorders including n-acetylglutamate synthetase deficiency, lysinuric protein intolerance, and ornithine transcarbamylase deficiency.
Orotic acid appears as white crystals or crystalline powder.
Orotic acid is a pyrimidinemonocarboxylic acid that is uracil bearing a carboxy substituent at position C-6. It has a role as a metabolite, an Escherichia coli metabolite and a mouse metabolite. It derives from a uracil. It is a conjugate acid of an orotate., 65-86-1.
Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia