Synthetic Route of 65-86-1, Orotic acid anhydrous is a hydrogen bonding interaction that can be found in biological systems. It plays a role in the physiological effects of orotic acid, which is a metabolite of uridine and an intermediate in the synthesis of pyrimidine nucleotides. Orotic acid has antimicrobial properties and has been shown to inhibit enzyme activities involved in energy metabolism, such as polymerase chain reaction (PCR) and adenosine triphosphate (ATP) synthase. Orotic acid also inhibits the growth of bacteria, fungi, and parasites. Orotic acid anhydrous is used for treating myocardial infarcts or brain functions. The untreated group was given no treatment at all.
Orotic acid, also known as orotate or orotsaeure, belongs to the class of organic compounds known as pyrimidinecarboxylic acids. These are pyrimidines with a structure containing a carboxyl group attached to the pyrimidine ring. Orotic acid exists as a solid, slightly soluble (in water), and a moderately acidic compound (based on its pKa). Orotic acid has been found in human liver and pancreas tissues, and has also been primarily detected in saliva, feces, urine, and blood. Within the cell, orotic acid is primarily located in the cytoplasm and mitochondria. Orotic acid exists in all eukaryotes, ranging from yeast to humans. Orotic acid participates in a number of enzymatic reactions. In particular, Orotic acid can be biosynthesized from L-dihydroorotic acid and quinone; which is mediated by the enzyme dihydroorotate dehydrogenase (quinone), mitochondrial. In addition, Orotic acid and phosphoribosyl pyrophosphate can be converted into orotidylic acid through its interaction with the enzyme uridine monophosphate synthetase isoform a. In humans, orotic acid is involved in the pyrimidine metabolism pathway. Orotic acid is also involved in several metabolic disorders, some of which include the mngie (mitochondrial neurogastrointestinal encephalopathy) pathway, dihydropyrimidinase deficiency, UMP synthase deficiency (orotic aciduria), and Beta ureidopropionase deficiency. Outside of the human body, orotic acid can be found in a number of food items such as green vegetables, alaska blueberry, chickpea, and colorado pinyon. This makes orotic acid a potential biomarker for the consumption of these food products. Orotic acid is a potentially toxic compound. Orotic acid has been found to be associated with several diseases known as phosphoenolpyruvate carboxykinase deficiency 1, cytosolic and hyperornithinemia-hyperammonemia-homocitrullinuria; orotic acid has also been linked to several inborn metabolic disorders including n-acetylglutamate synthetase deficiency, lysinuric protein intolerance, and ornithine transcarbamylase deficiency.
Orotic acid appears as white crystals or crystalline powder.
Orotic acid is a pyrimidinemonocarboxylic acid that is uracil bearing a carboxy substituent at position C-6. It has a role as a metabolite, an Escherichia coli metabolite and a mouse metabolite. It derives from a uracil. It is a conjugate acid of an orotate., 65-86-1.
Pyrimidine is a nitrogenous base similar to benzene (a six-membered ring) and includes cytosine, thymine, and uracil as bases used for DNA or RNA. 65-86-1, formula is C5H4N2O4, Name is 2,6-Dioxo-1,2,3,6-tetrahydropyrimidine-4-carboxylic acid. Pyrimidine also found in many synthetic compounds such as barbiturates and the HIV drug, zidovudine. Synthetic Route of 65-86-1.
Zhang, Kaihui;Yao, Yufeng;Wang, Meiqi;Liu, Fangle;Wang, Qian;Ma, Huanhuan;Xie, Yuanyuan;Ma, Yunxia;Dai, Pengyu;Zhu, Chenchen;Lin, Chaozhan research published 《 A UPLC-MS/MS-based metabolomics analysis of the pharmacological mechanisms of rabdosia serra against cholestasis》, the research content is summarized as follows. Rabdosia Serra, the dried aerial parts of Rabdosia serra (Maxim.) Hara (RS) from the Labiatae family, is a traditional Chinese herbal medicine called Xihuangcao. Although RS has been found to exert a therapeutic effect on cholestasis, the underlying mol. mechanism remains unclear. This study was designed to investigate the pharmacol. effect and mechanism of RS on cholestatic rats using metabolomics platform. Histopathol. and biochem. evaluations were performed to determine the therapeutic effect of RS and developed a rapid metabolite detection technol. method based on UPLC-MS/MS to perform metabolomics research. Further, quant. real-time polymerase chain reaction (RT-qPCR) was used to study the effect of RS on the bile acid metabolism pathway at the transcriptional level. RS significantly reduced the bile flow rates in cholestatic rats and decreased the levels of ALT, AST, TBA, T-BIL, and LDH, which were increased in the model group. Histol. anal. showed that RS alleviated the liver injury induced by ANIT. Serum metabolomics results revealed 33 of the 37 biomarkers were found to be significantly altered by ANIT, and 26 were considerably changed following treatment with RS. Metabolic pathway anal. revealed four pathways such as primary bile acid biosynthesis, biosynthesis of unsaturated fatty acids, and arachidonic acid and tryptophan metabolism The bile acid secretion process and the inflammation and oxidative stress processes are the major biochem. reactions following treatment with ANIT and RS. Bile acid-targeted metabolomics study showed that TCA, GCA, GCDCA, and GDCA might be sensitive biomarkers that induced liver injury. we found that treatment with RS regulated the levels of bile acid in the serum and liver and restored the proportion of bile acids, especially CA and conjugated bile acids, such as TCA and GCA, in the bile duct. RS increased the mRNA expression levels of FXR, SHP, BSEP, and MRP2 in livers, and IBABP, OST-α, and OST-β in the ileum. In this study, RS was found to protect the liver by regulating multiple metabolic pathways and promoting the excretion of bile acids. Simultaneously, RS played an essential role in reversing the imbalance of bile acids and protected against cholestasis by regulating the expression of transporters associated with bile acids. We demonstrated the correlation between mol. mechanisms and metabolites, provide a reference for the fabrication of extracts that can be used to treat cholestasis.
Synthetic Route of 65-86-1, Orotic acid anhydrous is a hydrogen bonding interaction that can be found in biological systems. It plays a role in the physiological effects of orotic acid, which is a metabolite of uridine and an intermediate in the synthesis of pyrimidine nucleotides. Orotic acid has antimicrobial properties and has been shown to inhibit enzyme activities involved in energy metabolism, such as polymerase chain reaction (PCR) and adenosine triphosphate (ATP) synthase. Orotic acid also inhibits the growth of bacteria, fungi, and parasites. Orotic acid anhydrous is used for treating myocardial infarcts or brain functions. The untreated group was given no treatment at all.
Orotic acid, also known as orotate or orotsaeure, belongs to the class of organic compounds known as pyrimidinecarboxylic acids. These are pyrimidines with a structure containing a carboxyl group attached to the pyrimidine ring. Orotic acid exists as a solid, slightly soluble (in water), and a moderately acidic compound (based on its pKa). Orotic acid has been found in human liver and pancreas tissues, and has also been primarily detected in saliva, feces, urine, and blood. Within the cell, orotic acid is primarily located in the cytoplasm and mitochondria. Orotic acid exists in all eukaryotes, ranging from yeast to humans. Orotic acid participates in a number of enzymatic reactions. In particular, Orotic acid can be biosynthesized from L-dihydroorotic acid and quinone; which is mediated by the enzyme dihydroorotate dehydrogenase (quinone), mitochondrial. In addition, Orotic acid and phosphoribosyl pyrophosphate can be converted into orotidylic acid through its interaction with the enzyme uridine monophosphate synthetase isoform a. In humans, orotic acid is involved in the pyrimidine metabolism pathway. Orotic acid is also involved in several metabolic disorders, some of which include the mngie (mitochondrial neurogastrointestinal encephalopathy) pathway, dihydropyrimidinase deficiency, UMP synthase deficiency (orotic aciduria), and Beta ureidopropionase deficiency. Outside of the human body, orotic acid can be found in a number of food items such as green vegetables, alaska blueberry, chickpea, and colorado pinyon. This makes orotic acid a potential biomarker for the consumption of these food products. Orotic acid is a potentially toxic compound. Orotic acid has been found to be associated with several diseases known as phosphoenolpyruvate carboxykinase deficiency 1, cytosolic and hyperornithinemia-hyperammonemia-homocitrullinuria; orotic acid has also been linked to several inborn metabolic disorders including n-acetylglutamate synthetase deficiency, lysinuric protein intolerance, and ornithine transcarbamylase deficiency.
Orotic acid appears as white crystals or crystalline powder.
Orotic acid is a pyrimidinemonocarboxylic acid that is uracil bearing a carboxy substituent at position C-6. It has a role as a metabolite, an Escherichia coli metabolite and a mouse metabolite. It derives from a uracil. It is a conjugate acid of an orotate., 65-86-1.
Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia