1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (cas: 69256-17-3) belongs to pyrimidine derivatives. The aromatic compound pyrimidine, and its derivatives, are ubiquitous in nature. They are found in nucleic acids, vitamins, amino acids, antibiotics, alkaloids, and a variety of toxins. Drugs having the pyrimidine motif have manifested to exhibit gratifying biological activity like anticancer, antiviral, anti-inflammatory, antibacterial, and antihypertensive activities.Application In Synthesis of 1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione
Distribution, metabolism, and excretion of 1-(2-fluoro-2-deoxy-β-D-arabinofuranosyl)thymine and 1-(2-fluoro-2-deoxy-β-D-arabinofuranosyl)-5-iodocytosine was written by Philips, Frederick S.; Feinberg, Aaron; Chou, Ting Chao; Vidal, Pedro M.; Su, Tsann Long; Watanabe, Kyoichi A.; Fox, Jack J.. And the article was included in Cancer Research on August 31,1983.Application In Synthesis of 1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione The following contents are mentioned in the article:
The pharmacologicl disposition and metabolic fate of 2-14C-labeled 1-(2-fluoro-2-deoxy-β-D-arabinofuranosyl)thymine (FMAU)(I) [69256-17-3] and 1-(2-fluoro-2-deoxy-β-D-arabinofuranosyl)-5-iodocytosine (FIAC)(II) [69123-90-6] were compared after giving each of the substances i.v. or orally. Most of the radioactivity of these substances is excreted in urine within 24 h after administration in mice and rats. During the same period, the recovery in feces and respiratory CO2 is, for each, < 5%. Biliary excretion from the common bile duct of rats is low, 2 to 4% of dose during the first 5 h after i.v. injection. Chromatog. anal. of 24-h urine collections after giving FMAU reveals that most of the radioactivity in mouse and rat urine is present as unchanged drug. Mouse urine also contains significant amounts of 3 unidentified metabolites of FMAU; these have also been detected in mouse plasma and in rat urine. Chromatog. analyses of plasma and urine samples from mice and rats given FIAC show that this substance is substantially transformed by deamination into a major metabolite, 1-(2-fluoro-2-deoxy-β-D-arabinofuranosyl)-5-ioduracil [69123-98-4]. Deiodinated metabolites have also been detected, namely, 1-(2-fluoro-2-deoxy-β-D-arabinofuranosyl)cytosine [56632-83-8] and 1-(2-fluoro-2-deoxy-β-D-arabinofuranosyl)uracil [69123-94-0]. Radioactivity in extracerebral organs of rats receiving labeled FIAC or FMAU is, within 10 min after i.v. injection, maximal and in concentrations equivalent to or higher than in plasma. Maximal concentrations after oral doses are reached within 30 to 60 min. At later times, rates of decrease in extracerebral organs parallel those in plasma. Half-lives after oral doses are higher than after i.v. doses. Penetration of radioactivity into rat brain is rapid, and the ratio of brain to plasma concentrations increases steadily to over 0.5 during the first 6 h after dosing. Substantially greater concentrations appear in brain after FMAU than after FIAC. Studies of radioactivity remaining in various portions of the gut of rats given oral doses of the labeled drugs suggest that most of the absorption takes place from the stomach or upper end of the small intestine. In dogs, the rates of renal clearance of FMAU and FIAC are less than 20% that of creatine when plasma concentrations are 10-fold greater than that inhibiting herpes virus replication in vitro by 90%. Nearly all of the radioactivity excreted in dog urine during the first 24 h after i.v. [2-14C]FMAU consists of unchanged drug. After [2-14C]FIAC, the 24-h urinary radioactivity is composed primarily of unchanged drug and the deiodinated metabolites, 1-(2-fluoro-2-deoxy-β-D-arabinofuranosyl)cytosine and 1-(2-fluoro-2-deoxy-β-D-arabinofuranosyl)uracil; only trace amounts of the deaminated product, 1-(2-fluoro-2-deoxy-β-D-arabinofuranosyl)-5-iodouracil, were detected. The synthesis of [2-14C]FMAU [83374-60-1] is described. This study involved multiple reactions and reactants, such as 1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (cas: 69256-17-3Application In Synthesis of 1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione).
1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (cas: 69256-17-3) belongs to pyrimidine derivatives. The aromatic compound pyrimidine, and its derivatives, are ubiquitous in nature. They are found in nucleic acids, vitamins, amino acids, antibiotics, alkaloids, and a variety of toxins. Drugs having the pyrimidine motif have manifested to exhibit gratifying biological activity like anticancer, antiviral, anti-inflammatory, antibacterial, and antihypertensive activities.Application In Synthesis of 1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione
69256-17-3;1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione;The future of 69256-17-3;New trend of C10H13FN2O5;function of 69256-17-3