Li, Wu-Hu’s team published research in Langmuir in 15 | CAS: 608-34-4

Langmuir published new progress about 608-34-4. 608-34-4 belongs to pyrimidines, auxiliary class Pyrimidine,Amide, name is 3-Methylpyrimidine-2,4(1H,3H)-dione, and the molecular formula is C5H6N2O2, Category: pyrimidines.

Li, Wu-Hu published the artcileIn-Situ Infrared Spectroscopic and Scanning Tunneling Microscopy Investigations of the Chemisorption Phases of Uracil, Thymine, and 3-Methyl Uracil on Au(111) Electrodes, Category: pyrimidines, the publication is Langmuir (1999), 15(14), 4875-4883, database is CAplus.

The complementary techniques of in-situ IR spectroscopy and scanning tunneling microscopy (STM) have been used in this study to build detailed structural models for the chemisorbed forms of uracil, thymine, and 3-Me uracil on Au(111) electrodes. The IR spectra, in water and D2O electrolytes, show that both uracil and thymine adopt similar coordination forms with the surface with both exocyclic oxygen atoms and a deprotonated N3 facing in toward the surface in a vertically oriented chemisorbate. 3-Me uracil cannot exhibit such a surface coordination and its IR signature in the carbonyl stretching region is quite different. This is interpreted as the chemisorbate interacting through its deprotonated N1 and C2=O. STM has been used to characterize and compare the mol. ordering of the three resp. adsorbates. Uracil exhibits the highest coverage structure c(3x√3), while thymine exhibits smaller ordered domains which are expanded in one direction to allow for the spatial requirements of the Me group on thymine. The domain size for the thymine chemisorbate could be improved by temperature annealing the electrode in-situ and a “pseudo c(√3×4)” structure was observed Both the uracil and thymine chemisorbate structures feature chains of mols., stacked like “rolls of coins”, close enough for-stacking to occur. The structure of thymine overlayers differs from uracil, since there are a number of different possible orientations of adjacent mol. rows, which results in a high frequency of stacking faults. These differences are discussed. 3-Me uracil is quite different, exhibiting a rather low coverage, albeit a highly ordered structure (5×2√3) which cannot allow-stacking. On the basis of these observations, the factors governing the formation of the resp. chemisorbed phases are discussed.

Langmuir published new progress about 608-34-4. 608-34-4 belongs to pyrimidines, auxiliary class Pyrimidine,Amide, name is 3-Methylpyrimidine-2,4(1H,3H)-dione, and the molecular formula is C5H6N2O2, Category: pyrimidines.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia

Zengeya, Thomas’s team published research in Angewandte Chemie, International Edition in 51 | CAS: 169396-92-3

Angewandte Chemie, International Edition published new progress about 169396-92-3. 169396-92-3 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Amide,Others,PNA, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C12H10F2Si, COA of Formula: C26H26N4O7.

Zengeya, Thomas published the artcileTriple-Helical Recognition of RNA Using 2-Aminopyridine-Modified PNA at Physiologically Relevant Conditions, COA of Formula: C26H26N4O7, the publication is Angewandte Chemie, International Edition (2012), 51(50), 12593-12596, database is CAplus and MEDLINE.

It was recently proposed that biol. relevant double-stranded RNAs (dsRNAs) could be recognized by major groove-binding peptide nucleic acids (PNAs), resulting in triple-helix formation. The present work demonstrates that sequence-selective recognition of duplex RNA can be achieved under physiol. relevant conditions by PNAs containing 2-aminopyridine (M). After preliminary studies that confirmed the binding of M-modified PNAs to RNA hairpin structures, pri-miRNA-215 was selected as an example of a biol. relevant RNA duplex for binding studies with M-modified PNA. Using an RNA hairpin model that contains the purine-rich recognition site present in pri-miRNA-215, it was shown that a PNA containing three M bases recognized the model hairpin with high affinity and 1:1 stoichiometry.

Angewandte Chemie, International Edition published new progress about 169396-92-3. 169396-92-3 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Amide,Others,PNA, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C12H10F2Si, COA of Formula: C26H26N4O7.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia

Chen, Yunan’s team published research in International Journal of Hydrogen Energy in 38 | CAS: 31401-45-3

International Journal of Hydrogen Energy published new progress about 31401-45-3. 31401-45-3 belongs to pyrimidines, auxiliary class Pyrimidine,Amine, name is N,N-Dimethylpyrimidin-4-amine, and the molecular formula is C6H9N3, Computed Properties of 31401-45-3.

Chen, Yunan published the artcileAn experimental investigation of sewage sludge gasification in near and super-critical water using a batch reactor, Computed Properties of 31401-45-3, the publication is International Journal of Hydrogen Energy (2013), 38(29), 12912-12920, database is CAplus.

The gasification of sewage sludge in near and super-critical water was investigated in a batch reactor. Results showed that the formation of gaseous products could be intensively affected by temperature In order to understand the effect of temperature on the development of reaction process and the formation of gaseous products better, the detailed characteristics of solid and liquid products were analyzed by SEM, N2 adsorption-desorption technique, FTIR, TOC, Ammonia-nitrogen anal. and SPE-GC/MS. The changes in the yield distribution of products and the characteristics of solid and liquid products indicated that organic matters in sewage sludge were almost completely dissolved and hydrolyzed in water at 425 °C. The dissolution and hydrolysis products were gasified by reforming and other reactions. The polymerization and dehydrogenation also occurred in dissolution and hydrolysis products, and the Diels-Alder reaction mechanism could be used to explain the phenomenon.

International Journal of Hydrogen Energy published new progress about 31401-45-3. 31401-45-3 belongs to pyrimidines, auxiliary class Pyrimidine,Amine, name is N,N-Dimethylpyrimidin-4-amine, and the molecular formula is C6H9N3, Computed Properties of 31401-45-3.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia

Bayramoglu, Duygu’s team published research in Polycyclic Aromatic Compounds in | CAS: 56-05-3

Polycyclic Aromatic Compounds published new progress about 56-05-3. 56-05-3 belongs to pyrimidines, auxiliary class Pyrimidine,Chloride,Amine,API, name is 2-Amino-4,6-dichloropyrimidine, and the molecular formula is C4H3Cl2N3, Recommanded Product: 2-Amino-4,6-dichloropyrimidine.

Bayramoglu, Duygu published the artcileAn Efficient Synthetic Method for the Synthesis of Novel Pyrimido[1,2-a]Pyrimidine-3-Carboxylates: Comparison of Irradiation and Conventional Conditions, Recommanded Product: 2-Amino-4,6-dichloropyrimidine, the publication is Polycyclic Aromatic Compounds, database is CAplus.

A very simple and efficient procedure for the synthesis of novel pyrimido[1,2-a]pyrimidine derivatives was described. Thermal cyclization reactions of 2-aminopyrimidine and its substituted derivatives with di-Et ethoxymethylenemalonate (EMME) was investigated. Conventional heating and microwave irradiation (MW) conditions were applied to enable the comparison of both techniques on the obtained products. Besides the effect of different reaction parameters and the substituents on the conversion reactions was also investigated in detail. Structural analyses of all compounds synthesized with high yields was carried out by suitable spectroscopic methods (FT-IR, NMR, mass spectroscopy, LC-MS TOF).

Polycyclic Aromatic Compounds published new progress about 56-05-3. 56-05-3 belongs to pyrimidines, auxiliary class Pyrimidine,Chloride,Amine,API, name is 2-Amino-4,6-dichloropyrimidine, and the molecular formula is C4H3Cl2N3, Recommanded Product: 2-Amino-4,6-dichloropyrimidine.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia

Motloch, Petr’s team published research in Organic & Biomolecular Chemistry in 17 | CAS: 56-05-3

Organic & Biomolecular Chemistry published new progress about 56-05-3. 56-05-3 belongs to pyrimidines, auxiliary class Pyrimidine,Chloride,Amine,API, name is 2-Amino-4,6-dichloropyrimidine, and the molecular formula is C4H3Cl2N3, SDS of cas: 56-05-3.

Motloch, Petr published the artcileTriaminopyrimidine derivatives as transmembrane HCl transporters, SDS of cas: 56-05-3, the publication is Organic & Biomolecular Chemistry (2019), 17(22), 5633-5638, database is CAplus and MEDLINE.

Small synthetic mols. capable of inducing transmembrane anion transport have received a lot of attention as potential anti-cancer agents due to their ability to interfere with intracellular pH homeostasis. A series of triaminopyrimidine-based anion transporters have been synthesized, and they are found to diminish proton gradients across lipid bilayers at physiol. relevant pH. The compounds have pKa values (≈7.2) that allow protonation/deprotonation processes coupled with anion binding/unbinding events in physiol. relevant conditions. Synthetic vesicle transport experiments as well as solid state structures indicate synergistic binding of HCl. Cell assays show that the transporters induce apoptosis in various cancerous cell lines.

Organic & Biomolecular Chemistry published new progress about 56-05-3. 56-05-3 belongs to pyrimidines, auxiliary class Pyrimidine,Chloride,Amine,API, name is 2-Amino-4,6-dichloropyrimidine, and the molecular formula is C4H3Cl2N3, SDS of cas: 56-05-3.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia

Reznickova, Eva’s team published research in European Journal of Medicinal Chemistry in 182 | CAS: 105130-26-5

European Journal of Medicinal Chemistry published new progress about 105130-26-5. 105130-26-5 belongs to pyrimidines, auxiliary class Pyrimidine,Amine,Benzene,Ether, name is 4-(2-Pyrimidinyloxy)aniline, and the molecular formula is C10H9N3O, Name: 4-(2-Pyrimidinyloxy)aniline.

Reznickova, Eva published the artcileActivity of 2,6,9-trisubstituted purines as potent PDGFRα kinase inhibitors with antileukaemic activity, Name: 4-(2-Pyrimidinyloxy)aniline, the publication is European Journal of Medicinal Chemistry (2019), 111663, database is CAplus and MEDLINE.

Receptor tyrosine kinase PDGFRα is often constitutively activated in various tumors and is regarded as a drug target. Here, we present a collection of 2,6,9-trisubstituted purines with nanomolar potency against PDGFRα and strong and selective cytotoxicity in the human eosinophilic leukemia cell line EOL-1 that expresses the FIP1L1-PDGFRA oncogene. In treated EOL-1 cells, the example compound 14q inhibited the autophosphorylation of PDGFRα and the phosphorylation of STAT3 and ERK1/2. Interestingly, we observed pronounced and even increased effects of 14q on PDGFRα and some of its downstream signalling pathways after drug washout. In accordance with suppressed PDGFRα signalling, treated cells were arrested in the G1 phase of the cell cycle and eventually underwent apoptosis. Our results show that substituted purines can be used as specific modulators of eosinophilic leukemia.

European Journal of Medicinal Chemistry published new progress about 105130-26-5. 105130-26-5 belongs to pyrimidines, auxiliary class Pyrimidine,Amine,Benzene,Ether, name is 4-(2-Pyrimidinyloxy)aniline, and the molecular formula is C10H9N3O, Name: 4-(2-Pyrimidinyloxy)aniline.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia

Erben, Anne’s team published research in Bioorganic & Medicinal Chemistry Letters in 21 | CAS: 186046-81-1

Bioorganic & Medicinal Chemistry Letters published new progress about 186046-81-1. 186046-81-1 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Benzene,Amide,Others,PNA,, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(4-(((benzhydryloxy)carbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C39H35N5O8, SDS of cas: 186046-81-1.

Erben, Anne published the artcileDNA-instructed acyl transfer reactions for the synthesis of bioactive peptides, SDS of cas: 186046-81-1, the publication is Bioorganic & Medicinal Chemistry Letters (2011), 21(17), 4993-4997, database is CAplus and MEDLINE.

The authors present a method which allows for the translation of nucleic acid information into the output of mols. that interfere with disease-related protein-protein interactions. The method draws upon a nucleic acid-templated reaction, in which adjacent binding of reactive conjugates triggers the transfer of an aminoacyl or peptidyl group from a donating thioester-linked PNA-peptide hybrid to a peptide-PNA acceptor. The authors evaluated the influence of conjugate structures on reactivity and sequence specificity. The DNA-triggered peptide synthesis proceeded sequence specifically and showed catalytic turnover in template. The affinity of the formed peptide conjugates for the BIR3 domain of the X-linked inhibitor of apoptosis protein (XIAP) is discussed.

Bioorganic & Medicinal Chemistry Letters published new progress about 186046-81-1. 186046-81-1 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Benzene,Amide,Others,PNA,, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(4-(((benzhydryloxy)carbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C39H35N5O8, SDS of cas: 186046-81-1.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia

Erben, Anne’s team published research in Angewandte Chemie, International Edition in 50 | CAS: 186046-81-1

Angewandte Chemie, International Edition published new progress about 186046-81-1. 186046-81-1 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Benzene,Amide,Others,PNA,, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(4-(((benzhydryloxy)carbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C39H35N5O8, Quality Control of 186046-81-1.

Erben, Anne published the artcileDNA-Triggered Synthesis and Bioactivity of Proapoptotic Peptides, Quality Control of 186046-81-1, the publication is Angewandte Chemie, International Edition (2011), 50(12), 2828-2832, S2828/1-S2828/17, database is CAplus and MEDLINE.

Diseases are frequently caused by changes in the genetic infrastructure. In such cases, the disordered state of a diseased cell is encoded in the DNA and reflected in the level and sequence of the expressed RNA mols. The information obtained from nucleic acids may be used to direct mol. therapies only to diseased cells and tissues. In a fascinating approach, disease-specific nucleic acid sequences could be hijacked to trigger the formation or release of drug mols. Herein a reaction system is introduced in which the sequence information of an unstructured DNA template is used to trigger the transfer of an aminoacyl group from a donating thioester-modified peptide-nucleic acid (PNA) conjugate to an acceptor peptidyl-PNA conjugate. It is demonstrated that the template can act as a catalyst which instructs the formation of many product mols. per template mol. The formed peptide-PNA conjugate was designed to interfere with the protein-protein interactions between caspase-9, a protease involved in the initiation of programmed cell death (apoptosis), and the X-linked inhibitor of apoptosis protein XIAP. It is shown that the nucleic acid programmed peptide synthesis allows activation of caspase-9 and a downstream caspase.

Angewandte Chemie, International Edition published new progress about 186046-81-1. 186046-81-1 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Benzene,Amide,Others,PNA,, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(4-(((benzhydryloxy)carbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C39H35N5O8, Quality Control of 186046-81-1.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia

Erben, Anne’s team published research in Bioorganic & Medicinal Chemistry Letters in 21 | CAS: 169396-92-3

Bioorganic & Medicinal Chemistry Letters published new progress about 169396-92-3. 169396-92-3 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Amide,Others,PNA, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C26H26N4O7, Category: pyrimidines.

Erben, Anne published the artcileDNA-instructed acyl transfer reactions for the synthesis of bioactive peptides, Category: pyrimidines, the publication is Bioorganic & Medicinal Chemistry Letters (2011), 21(17), 4993-4997, database is CAplus and MEDLINE.

The authors present a method which allows for the translation of nucleic acid information into the output of mols. that interfere with disease-related protein-protein interactions. The method draws upon a nucleic acid-templated reaction, in which adjacent binding of reactive conjugates triggers the transfer of an aminoacyl or peptidyl group from a donating thioester-linked PNA-peptide hybrid to a peptide-PNA acceptor. The authors evaluated the influence of conjugate structures on reactivity and sequence specificity. The DNA-triggered peptide synthesis proceeded sequence specifically and showed catalytic turnover in template. The affinity of the formed peptide conjugates for the BIR3 domain of the X-linked inhibitor of apoptosis protein (XIAP) is discussed.

Bioorganic & Medicinal Chemistry Letters published new progress about 169396-92-3. 169396-92-3 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Amide,Others,PNA, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C26H26N4O7, Category: pyrimidines.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia

Erben, Anne’s team published research in Angewandte Chemie, International Edition in 50 | CAS: 169396-92-3

Angewandte Chemie, International Edition published new progress about 169396-92-3. 169396-92-3 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Amide,Others,PNA, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C26H26N4O7, COA of Formula: C26H26N4O7.

Erben, Anne published the artcileDNA-Triggered Synthesis and Bioactivity of Proapoptotic Peptides, COA of Formula: C26H26N4O7, the publication is Angewandte Chemie, International Edition (2011), 50(12), 2828-2832, S2828/1-S2828/17, database is CAplus and MEDLINE.

Diseases are frequently caused by changes in the genetic infrastructure. In such cases, the disordered state of a diseased cell is encoded in the DNA and reflected in the level and sequence of the expressed RNA mols. The information obtained from nucleic acids may be used to direct mol. therapies only to diseased cells and tissues. In a fascinating approach, disease-specific nucleic acid sequences could be hijacked to trigger the formation or release of drug mols. Herein a reaction system is introduced in which the sequence information of an unstructured DNA template is used to trigger the transfer of an aminoacyl group from a donating thioester-modified peptide-nucleic acid (PNA) conjugate to an acceptor peptidyl-PNA conjugate. It is demonstrated that the template can act as a catalyst which instructs the formation of many product mols. per template mol. The formed peptide-PNA conjugate was designed to interfere with the protein-protein interactions between caspase-9, a protease involved in the initiation of programmed cell death (apoptosis), and the X-linked inhibitor of apoptosis protein XIAP. It is shown that the nucleic acid programmed peptide synthesis allows activation of caspase-9 and a downstream caspase.

Angewandte Chemie, International Edition published new progress about 169396-92-3. 169396-92-3 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Amide,Others,PNA, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C26H26N4O7, COA of Formula: C26H26N4O7.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia