Trzcinska-Daneluti, Agata M. et al. published their research in Molecular and Cellular Proteomics in 2012 | CAS: 219580-11-7

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. Pyrimidine derivatives also play an important role in drug development, either in concert with other compounds or on their own.Name: 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea

Use of kinase inhibitors to correct ΔF508-CFTR function was written by Trzcinska-Daneluti, Agata M.;Nguyen, Leo;Jiang, Chong;Fladd, Christopher;Uehling, David;Prakesch, Michael;Al-Awar, Rima;Rotin, Daniela. And the article was included in Molecular and Cellular Proteomics in 2012.Name: 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea The following contents are mentioned in the article:

The most common mutation in cystic fibrosis (CF) is a deletion of Phe at position 508 (ΔF508-CFTR). ΔF508-CFTR is a trafficking mutant that is retained in the ER, unable to reach the plasma membrane. To identify compounds and drugs that rescue this trafficking defect, we screened a kinase inhibitor library enriched for small mols. already in the clinic or in clin. trials for the treatment of cancer and inflammation, using our recently developed high-content screen technol. The top hits of the screen were further validated by (1) biochem. anal. to demonstrate the presence of mature (Band C) ΔF508-CFTR, (2) flow cytometry to reveal the presence of ΔF508-CFTR at the cell surface, (3) short-circuit current (Isc) anal. in Ussing chambers to show restoration of function of the rescued ΔF508-CFTR in epithelial MDCK cells stably expressing this mutant (including EC50 determinations), and importantly (4) Isc anal. of Human Bronchial Epithelial (HBE) cells harvested from homozygote ΔF508-CFTR transplant patients. Interestingly, several inhibitors of receptor Tyr kinases (RTKs), such as SU5402 and SU6668 (which target FGFRs, VEGFR, and PDGFR) exhibited strong rescue of ΔF508-CFTR, as did several inhibitors of the Ras/Raf/MEK/ERK or p38 pathways (e.g. (5Z)-7-oxozeaenol). Prominent rescue was also observed by inhibitors of GSK-3β (e.g. GSK-3β Inhibitor II and Kenpaullone). These results identify several kinase inhibitors that can rescue ΔF508-CFTR to various degrees, and suggest that use of compounds or drugs already in the clinic or in clin. trials for other diseases can expedite delivery of treatment for CF patients. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7Name: 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea).

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. Pyrimidine derivatives also play an important role in drug development, either in concert with other compounds or on their own.Name: 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Cabrera Zapata, Lucas E. et al. published their research in Cellular and Molecular Life Sciences in 2021 | CAS: 1373423-53-0

Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0) belongs to pyrimidine derivatives. The pyrimidine derivatives can easily interact with enzymes, genetic materials, and bio components within the cell. We all know its importance to life – pyrimidine and purine bases are included in the structure of DNA and RNA.Reference of 1373423-53-0

X-linked histone H3K27 demethylase Kdm6a regulates sexually dimorphic differentiation of hypothalamic neurons was written by Cabrera Zapata, Lucas E.;Cisternas, Carla D.;Sosa, Camila;Garcia-Segura, Luis Miguel;Arevalo, Maria Angeles;Cambiasso, Maria Julia. And the article was included in Cellular and Molecular Life Sciences in 2021.Reference of 1373423-53-0 The following contents are mentioned in the article:

Several X-linked genes are involved in neuronal differentiation and may contribute to the generation of sex dimorphisms in the brain. Previous results showed that XX hypothalamic neurons grow faster, have longer axons, and exhibit higher expression of the neuritogenic gene neurogenin 3 (Ngn3) than XY before perinatal masculinization. Here we evaluated the participation of candidate X-linked genes in the development of these sex differences, focusing mainly on Kdm6a, a gene encoding for an H3K27 demethylase with functions controlling gene expression genome-wide. We established hypothalamic neuronal cultures from wild-type or transgenic Four Core Genotypes mice, a model that allows evaluating the effect of sex chromosomes independently of gonadal type. X-linked genes Kdm6a, Eif2s3x and Ddx3x showed higher expression in XX compared to XY neurons, regardless of gonadal sex. Moreover, Kdm6a expression pattern with higher mRNA levels in XX than XY did not change with age at E14, P0, and P60 in hypothalamus or under 17α-estradiol treatment in culture. Kdm6a pharmacol. blockade by GSK-J4 reduced axonal length only in female neurons and decreased the expression of neuritogenic genes Neurod1, Neurod2 and Cdk5r1 in both sexes equally, while a sex-specific effect was observed in Ngn3. Finally, Kdm6a downregulation using siRNA reduced axonal length and Ngn3 expression only in female neurons, abolishing the sex differences observed in control conditions. Altogether, these results point to Kdm6a as a key mediator of the higher axogenesis and Ngn3 expression observed in XX neurons before the critical period of brain masculinization. This study involved multiple reactions and reactants, such as Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0Reference of 1373423-53-0).

Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0) belongs to pyrimidine derivatives. The pyrimidine derivatives can easily interact with enzymes, genetic materials, and bio components within the cell. We all know its importance to life – pyrimidine and purine bases are included in the structure of DNA and RNA.Reference of 1373423-53-0

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Jecklin, Matthias Conradin et al. published their research in Analytical Chemistry (Washington, DC, United States) in 2009 | CAS: 219580-11-7

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. The aromatic compound pyrimidine, and its derivatives, are ubiquitous in nature. They are found in nucleic acids, vitamins, amino acids, antibiotics, alkaloids, and a variety of toxins. We all know its importance to life – pyrimidine and purine bases are included in the structure of DNA and RNA.SDS of cas: 219580-11-7

Affinity Classification of Kinase Inhibitors by Mass Spectrometric Methods and Validation Using Standard IC50 Measurements was written by Jecklin, Matthias Conradin;Touboul, David;Jain, Rishi;Naggar Toole, Estee;Tallarico, John;Drueckes, Peter;Ramage, Paul;Zenobi, Renato. And the article was included in Analytical Chemistry (Washington, DC, United States) in 2009.SDS of cas: 219580-11-7 The following contents are mentioned in the article:

Protein kinases have emerged as a major drug target in the last years. Since more than 500 kinases are encoded in the human genome, cross-reactivity of a majority of kinase inhibitors causes problems. Tools are required for a rapid classification of inhibitors according to their affinity for a certain target to refine the search for new, more specific lead compounds Mass spectrometry (MS) is increasingly used in pharmaceutical research and drug discovery to investigate protein-ligand interactions and determination of binding affinities. We present a comparison of different existing nanoelectrospray-MS based methods to quantify binding affinities and qual. rank, by competitive experiments, the affinity of several clin. inhibitors. We also present a new competitive method which is derived from our previous work for quant. assessment of binding strengths. The human kinases studied for this purpose were p38α (MAPK14) and LCK (lymphocyte specific kinase), and their interaction with 17 known small mol. kinase inhibitors was probed. Moreover, we present a new method to differentiate type I from type II inhibitors based on a kinetic experiment with direct MS read-out of the noncovalent complex between the human kinase and the inhibitor. This method was successfully applied to p38α binding to BIRB796, as well as to a BIRB796 analog. Quant. determination of the binding strength is also described. The results of our competitive experiments for the affinity classification of different inhibitors, as well as the results for the kinetic study, are in good agreement with IC50 measurements and data found in the literature. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7SDS of cas: 219580-11-7).

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. The aromatic compound pyrimidine, and its derivatives, are ubiquitous in nature. They are found in nucleic acids, vitamins, amino acids, antibiotics, alkaloids, and a variety of toxins. We all know its importance to life – pyrimidine and purine bases are included in the structure of DNA and RNA.SDS of cas: 219580-11-7

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Kim, Ji On et al. published their research in PLoS One in 2022 | CAS: 219580-11-7

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. The pyrimidine nitrogenous bases are derived from the organic compound pyrimidine through the addition of various functional groups. Pyrimidine derivatives also play an important role in drug development, either in concert with other compounds or on their own.Synthetic Route of C28H41N7O3

PDGFR-β signaling mediates HMGB1 release in mechanically stressed vascular smooth muscle cells was written by Kim, Ji On;Baek, Seung Eun;Jeon, Eun Yeong;Choi, Jong Min;Jang, Eun Jeong;Kim, Chi Dae. And the article was included in PLoS One in 2022.Synthetic Route of C28H41N7O3 The following contents are mentioned in the article:

Mech. stressed vascular smooth muscle cells (VSMCs) have potential roles in the development of vascular complications. However, the underlying mechanisms are unclear. Using VSMCs cultured from rat thoracic aorta explants, we investigated the effects of mech. stretch (MS) on the cellular secretion of high mobility group box 1 (HMGB1), a major damage-associated mol. pattern that mediates vascular complications in stressed vasculature. ELISA (ELISA) demonstrated an increase in the secretion of HMGB1 in VSMCs stimulated with MS (0-3% strain, 60 cycles/min), and this secretion was markedly and time-dependently increased at 3% MS. The increased secretion of HMGB1 at 3% MS was accompanied by an increased cytosolic translocation of nuclear HMGB1; the acetylated and phosphorylated forms of this protein were significantly increased. Among various inhibitors of membrane receptors mediating mech. signals, AG1295 (a platelet-derived growth factor receptor (PDGFR) inhibitor) attenuated MS-induced HMGB1 secretion. Inhibitors of other receptors, including epidermal growth factor, insulin-like growth factor, and fibroblast growth factor receptors, did not inhibit this secretion. Addnl., MS-induced HMGB1 secretion was markedly attenuated in PDGFR-β-deficient cells but not in cells transfected with PDGFR-α siRNA. Likewise, PDGF-DD, but not PDGF-AA, directly increased HMGB1 secretion in VSMCs, indicating a pivotal role of PDGFR-β signaling in the secretion of this protein in VSMCs. Thus, targeting PDGFR-β-mediated secretion of HMGB1 in VSMCs might be a promising therapeutic strategy for vascular complications associated with hypertension. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7Synthetic Route of C28H41N7O3).

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. The pyrimidine nitrogenous bases are derived from the organic compound pyrimidine through the addition of various functional groups. Pyrimidine derivatives also play an important role in drug development, either in concert with other compounds or on their own.Synthetic Route of C28H41N7O3

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Luo, XiaoLing et al. published their research in Cardiovascular Research in 2018 | CAS: 1373423-53-0

Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0) belongs to pyrimidine derivatives. The pyrimidine nitrogenous bases are derived from the organic compound pyrimidine through the addition of various functional groups. As nucleotides in DNA and RNA, pyrimidine nucleotide derivatives have a wide range of biological applications. For example, pyrimidine derivatives are useful in DNA repair studies involving cancer and epigenetics.Electric Literature of C24H27N5O2

Critical role of histone demethylase Jumonji domain-containing protein 3 in the regulation of neointima formation following vascular injury was written by Luo, XiaoLing;Yang, Di;Wu, WeiJun;Long, Fen;Xiao, ChenXi;Qin, Ming;Law, Betty YuenKwan;Suguro, Rinkiko;Xu, Xin;Qu, LeFeng;Liu, XinHua;Zhu, Yi Zhun. And the article was included in Cardiovascular Research in 2018.Electric Literature of C24H27N5O2 The following contents are mentioned in the article:

Jumonji domain-containing protein 3 (JMJD3), also called lysine specific demethylase 6B (KDM6b), is an inducible histone demethylase which plays an important role in many biol. processes, however, its function in vascular remodelling remains unknown. We aim to demonstrate that JMJD3 mediates vascular neointimal hyperplasia following carotid injury, and proliferation and migration in platelet-derived growth factor BB (PDGF-BB)-induced vascular smooth muscle cells (VSMCs). By using both genetic and pharmacol. approaches, our study provides the first evidence that JMJD3 controls PDGF-BB-induced VSMCs proliferation and migration. Furthermore, our in vivo mouse and rat intimal thickening models demonstrate that JMJD3 is a novel mediator of neointima formation based on its mediatory effects on VSMCs proliferation, migration, and phenotypic switching. We further show that JMJD3 ablation by small interfering RNA or inhibitor GSK J4 can suppress the expression of NADPH oxidase 4 (Nox4), which is correlated with H3K27me3 enrichment around the gene promoters. Besides, deficiency of JMJD3 and Nox4 prohibits autophagic activation, and subsequently attenuates neointima and vascular remodelling following carotid injury. Above all, the increased expression of JMJD3 and Nox4 is further confirmed in human atherosclerotic arteries plaque specimens. JMJD3 is a novel factor involved in vascular remodelling. Deficiency of JMJD3 reduces neointima formation after vascular injury by a mechanism that inhibits Nox4-autophagy signalling activation, and suggesting JMJD3 may serve as a perspective target for the prevention and treatment of vascular diseases. This study involved multiple reactions and reactants, such as Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0Electric Literature of C24H27N5O2).

Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0) belongs to pyrimidine derivatives. The pyrimidine nitrogenous bases are derived from the organic compound pyrimidine through the addition of various functional groups. As nucleotides in DNA and RNA, pyrimidine nucleotide derivatives have a wide range of biological applications. For example, pyrimidine derivatives are useful in DNA repair studies involving cancer and epigenetics.Electric Literature of C24H27N5O2

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Suneel Kumar, B. V. S. et al. published their research in Current Topics in Medicinal Chemistry in 2014 | CAS: 219580-11-7

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidine also found in many synthetic compounds such as barbiturates and the HIV drug, zidovudine. Therapy for fungal infections is based mainly on four classes of antifungals: azoles, echinocandins, polyenes, and pyrimidine analogs.Synthetic Route of C28H41N7O3

Design, Synthesis and Screening Studies of Potent Thiazol-2-Amine Derivatives as Fibroblast Growth Factor Receptor 1 Inhibitors was written by Suneel Kumar, B. V. S.;Lakshmi, Narasu;Kumar, M. Ravi;Rambabu, Gundla;Manjashetty, Thimmappa H.;Arunasree, Kalle M.;Sriram, Dharmarajan;Ramkumar, Kavya;Neamati, Nouri;Dayam, Raveendra;Sarma, J. A. R. P.. And the article was included in Current Topics in Medicinal Chemistry in 2014.Synthetic Route of C28H41N7O3 The following contents are mentioned in the article:

Fibroblast growth factor receptor 1 (FGFR1) a tyrosine kinase receptor, plays important roles in angiogenesis, embryonic development, cell proliferation, cell differentiation, and wound healing. The FGFR isoforms and their receptors (FGFRs) considered as a potential targets and under intense research to design potential anticancer agents. Fibroblast growth factors (FGF’s) and its growth factor receptors (FGFR) plays vital role in one of the critical pathway in monitoring angiogenesis. In the current study, quant. pharmacophore models were generated and validated using known FGFR1 inhibitors. The pharmacophore models were generated using a set of 28 compounds (training). The top pharmacophore model was selected and validated using a set of 126 compounds (test set) and also using external validation. The validated pharmacophore was considered as a virtual screening query to screen a database of 400,000 virtual mols. and pharmacophore model retrieved 2800 hits. The retrieved hits were subsequently filtered based on the fit value. The selected hits were subjected for docking studies to observe the binding modes of the retrieved hits and also to reduce the false positives. One of the potential hits (thiazole-2-amine derivative) was selected based the pharmacophore fit value, dock score, and synthetic feasibility. A few analogs of the thiazole-2-amine derivative were synthesized. These compounds were screened for FGFR1 activity and anti-proliferative studies. The top active compound showed 56.87% inhibition of FGFR1 activity at 50 μM and also showed good cellular activity. Further optimization of thiazole-2-amine derivatives is in progress. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7Synthetic Route of C28H41N7O3).

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidine also found in many synthetic compounds such as barbiturates and the HIV drug, zidovudine. Therapy for fungal infections is based mainly on four classes of antifungals: azoles, echinocandins, polyenes, and pyrimidine analogs.Synthetic Route of C28H41N7O3

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Li, Yunan et al. published their research in Journal of Cancer Research and Clinical Oncology in 2018 | CAS: 1373423-53-0

Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0) belongs to pyrimidine derivatives. Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. A Cu-catalyzed and 4-HO-TEMPO-mediated [3 + 3] annulation of commercially available amidines with saturated ketones enables an efficient and facile synthesis of structurally important pyrimidines via a cascade reaction of oxidative dehydrogenation/annulation/oxidative aromatization.Electric Literature of C24H27N5O2

Therapeutic potential of gsk-j4, a histone demethylase kdm6b/jmjd3 inhibitor, for acute myeloid leukemia was written by Li, Yunan;Zhang, Mingying;Sheng, Mengyao;Zhang, Peng;Chen, Zizhen;Xing, Wen;Bai, Jie;Cheng, Tao;Yang, Feng-Chun;Zhou, Yuan. And the article was included in Journal of Cancer Research and Clinical Oncology in 2018.Electric Literature of C24H27N5O2 The following contents are mentioned in the article:

Purpose: Acute myeloid leukemia (AML) is a heterogeneous disease with poor outcomes. Despite increased evidence shows that dysregulation of histone modification contributes to AML, specific drugs targeting key histone modulators are not applied in the clin. treatment of AML. Here, we investigated whether targeting KDM6B, the demethylase of tri-methylated histone H3 lysine 27 (H3K27me3), has a therapeutic potential for AML. Methods: A KDM6B-specific inhibitor, GSK-J4, was applied to treat the primary cells from AML patients and AML cell lines in vitro and in vivo. RNA-sequencing was performed to reveal the underlying mechanisms of inhibiting KDM6B for the treatment of AML. Results: Here we observed that the mRNA expression of KDM6B was up-regulated in AML and pos. correlated with poor survival. Treatment with GSK-J4 increased the global level of H3K27me3 and reduced the proliferation and colony-forming ability of primary AML cells and AML cell lines. GSK-J4 treatment significantly induced cell apoptosis and cell-cycle arrest in Kasumi-1 cells, and displayed a synergistic effect with cytosine arabinoside. Notably, injection of GSK-J4 attenuated the disease progression in a human AML xenograft mouse model in vivo. Treatment with GSK-J4 predominantly resulted in down-regulation of DNA replication and cell-cycle-related pathways, as well as abrogated the expression of critical cancer-promoting HOX genes. ChIP-qPCR validated an increased enrichment of H3K27me3 in the transcription start sites of these HOX genes. Conclusions: In summary, our findings suggest that targeting KDM6B with GSK-J4 has a therapeutic potential for the treatment of AML. This study involved multiple reactions and reactants, such as Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0Electric Literature of C24H27N5O2).

Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0) belongs to pyrimidine derivatives. Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. A Cu-catalyzed and 4-HO-TEMPO-mediated [3 + 3] annulation of commercially available amidines with saturated ketones enables an efficient and facile synthesis of structurally important pyrimidines via a cascade reaction of oxidative dehydrogenation/annulation/oxidative aromatization.Electric Literature of C24H27N5O2

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Guyett, Paul J. et al. published their research in ACS Infectious Diseases in 2016 | CAS: 219580-11-7

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidines are isomeric with two other forms of diazines: pyridazine, with the nitrogen atoms in the 1 and 2 positions; and pyrazine, with the nitrogen atoms in the 1 and 4 positions. Therapy for fungal infections is based mainly on four classes of antifungals: azoles, echinocandins, polyenes, and pyrimidine analogs.Category: pyrimidines

Glycogen Synthase Kinase 3β Promotes the Endocytosis of Transferrin in the African Trypanosome was written by Guyett, Paul J.;Xia, Shuangluo;Swinney, David C.;Pollastri, Michael P.;Mensa-Wilmot, Kojo. And the article was included in ACS Infectious Diseases in 2016.Category: pyrimidines The following contents are mentioned in the article:

Human parasite Trypanosoma brucei proliferates in the blood of its host, where it takes up iron via receptor-mediated endocytosis of transferrin (Tf). Mechanisms of Tf endocytosis in the trypanosome are not fully understood. Small mol. lapatinib inhibits Tf endocytosis in T. brucei and associates with protein kinase GSK3β (TbGSK3β). Therefore, we hypothesized that Tf endocytosis may be regulated by TbGSK3β, and we used three approaches (both genetic and small mol.) to test this possibility. First, the RNAi knock-down of TbGSK3β reduced Tf endocytosis selectively, without affecting the uptake of haptaglobin-Hb (Hp-Hb) or bovine serum albumin (BSA). Second, the overexpression of TbGSK3β increased the Tf uptake. Third, small-mol. inhibitors of TbGSK3β, TWS119 (IC50 = 600 nM), and GW8510 (IC50 = 8 nM) reduced Tf endocytosis. Furthermore, TWS119, but not GW8510, selectively blocked Tf uptake. Thus, TWS119 phenocopies the selective endocytosis effects of a TbGSK3β knockdown. Two new inhibitors of TbGSK3β, LY2784544 (IC50 = 0.6 μM) and sorafenib (IC50 = 1.7 μM), were discovered in a focused screen: at low micromolar concentrations, they prevented Tf endocytosis as well as trypanosome proliferation (GI50‘s were 1.0 and 3.1 μM, resp.). These studies show that (a) TbGSK3β regulates Tf endocytosis, (b) TWS119 is a small-mol. tool for investigating the endocytosis of Tf, (c) endocytosis of GPI-anchored TfR and HpHbR are differentially regulated, and (d) the imidazopyridazine aminopyrazole scaffold of LY2784544 is attractive for a hit-to-lead optimization program in antitrypanosome drug discovery. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7Category: pyrimidines).

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidines are isomeric with two other forms of diazines: pyridazine, with the nitrogen atoms in the 1 and 2 positions; and pyrazine, with the nitrogen atoms in the 1 and 4 positions. Therapy for fungal infections is based mainly on four classes of antifungals: azoles, echinocandins, polyenes, and pyrimidine analogs.Category: pyrimidines

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Li, Jingjing et al. published their research in Tumor Biology in 2016 | CAS: 219580-11-7

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidines are isomeric with two other forms of diazines: pyridazine, with the nitrogen atoms in the 1 and 2 positions; and pyrazine, with the nitrogen atoms in the 1 and 4 positions. As nucleotides in DNA and RNA, pyrimidine nucleotide derivatives have a wide range of biological applications. For example, pyrimidine derivatives are useful in DNA repair studies involving cancer and epigenetics.COA of Formula: C28H41N7O3

The over-expression of FGFR4 could influence the features of gastric cancer cells and inhibit the efficacy of PD173074 and 5-fluorouracil towards gastric cancer was written by Li, Jingjing;Ye, Yanwei;Wang, Min;Lu, Lisha;Han, Chao;Zhou, Yubing;Zhang, Jingmin;Yu, Zujiang;Zhang, Xiefu;Zhao, Chunlin;Wen, Jianguo;Kan, Quancheng. And the article was included in Tumor Biology in 2016.COA of Formula: C28H41N7O3 The following contents are mentioned in the article:

The aim was to investigate the function of fibroblast growth factor receptor 4 (FGFR4) in gastric cancer (GC) and explore the treatment value of agent targeted to FGFR4. Function assays in vitro and in vivo were performed to investigate the discrepancy of biol. features among the GC cells with different expression of FGFR4. GC cells were treated with the single and combination of PD173074 (PD, an inhibitor of FGFR4) and 5-fluorouracil (5-Fu). The invasion ability were stronger, and the apoptosis rates were lower in MGC803 and BGC823 cells treated with FGFR4-LV5 (over-expression of FGFR4 protein) (P < 0.05). The proliferation ability of GC cells is reduced when treated by the single and combination of 5-Fu and PD while that of the FGFR4-LV5 group was less inhibited compared with control group (P < 0.05). The apoptosis rates are remarkably increased in GC cells treated with the single and combination of 5-Fu and PD (P < 0.05). However, the apoptosis rate obviously is reduced in GC cells treated with FGFR4-LV5 compared with control group (P < 0.05). The expression of PCNA and Bcl-XL is remarkably decreased, and the expression of Caspase-3 and cleaved Caspase-3 is obviously increased in GC cells treated with the single and combination of 5-Fu and PD. The tumor volumes of nude mice in FGFR4-LV5 group were much more increased (P < 0.05). The over-expression of FGFR4 enhanced the proliferation ability of GC in vitro and in vivo. The combination of 5-Fu and PD exerted synergetic effect in weakening the proliferation ability and promoting apoptosis in GC cells, while the over-expression of FGFR4 might inhibit the efficacy of two drugs. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7COA of Formula: C28H41N7O3).

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidines are isomeric with two other forms of diazines: pyridazine, with the nitrogen atoms in the 1 and 2 positions; and pyrazine, with the nitrogen atoms in the 1 and 4 positions. As nucleotides in DNA and RNA, pyrimidine nucleotide derivatives have a wide range of biological applications. For example, pyrimidine derivatives are useful in DNA repair studies involving cancer and epigenetics.COA of Formula: C28H41N7O3

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Liu, Zhi et al. published their research in Journal of Molecular Cell Biology in 2015 | CAS: 1373423-53-0

Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0) belongs to pyrimidine derivatives. Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. Pyrimidine derivatives have been used in a wide variety of pharmaceuticals including general anesthetics, anti-epilepsy medication, anti-malaria medication, drugs for treating high blood pressure, and HIV medication.Synthetic Route of C24H27N5O2

The histone H3 lysine-27 demethylase Jmjd3 plays a critical role in specific regulation of Th17 cell differentiation was written by Liu, Zhi;Cao, Wei;Xu, Longxia;Chen, Xi;Zhan, Yu;Yang, Qian;Liu, Sanhong;Chen, Pengfei;Jiang, Yuhang;Sun, Xiaohua;Tao, Yu;Hu, Yiming;Li, Cuifeng;Wang, Qi;Wang, Ying;Chen, Charlie Degui;Shi, Yufang;Zhang, Xiaoren. And the article was included in Journal of Molecular Cell Biology in 2015.Synthetic Route of C24H27N5O2 The following contents are mentioned in the article:

Interleukin (IL) 17-producing T helper (Th17) cells play critical roles in the clearance of extracellular bacteria and fungi as well as the pathogenesis of various autoimmune diseases, such as multiple sclerosis, psoriasis, and ulcerative colitis. Although a global transcriptional regulatory network of Th17 cell differentiation has been mapped recently, the participation of epigenetic modifications in the differentiation process has yet to be elucidated. We demonstrated here that histone H3 lysine-27 (H3K27) demethylation, predominantly mediated by the H3K27 demethylase Jmjd3, crucially regulated Th17 cell differentiation. Activation of naïve CD4+ T cells immediately induced high expression of Jmjd3. Genetic depletion of Jmjd3 in CD4+ T cells specifically impaired Th17 cell differentiation both in vitro and in vivo. Ectopic expression of Jmjd3 largely rescued the impaired differentiation of Th17 cells in vitro in Jmjd3-deficient CD4+ T cells. Importantly, Jmjd3-deficient mice were resistant to the induction of exptl. autoimmune encephalomyelitis (EAE). Furthermore, inhibition of the H3K27 demethylase activity with the specific inhibitor GSK-J4 dramatically suppressed Th17 cell differentiation in vitro. At the mol. level, Jmjd3 directly bound to and reduced the level of H3K27 trimethylation (me3) at the genomic sites of Rorc, which encodes the master Th17 transcription factor Rorγt, and Th17 cytokine genes such as Il17, Il17f, and Il22. Therefore, our studies established a critical role of Jmjd3-mediated H3K27 demethylation in Th17 cell differentiation and suggest that Jmjd3 can be a novel therapeutic target for suppressing autoimmune responses. This study involved multiple reactions and reactants, such as Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0Synthetic Route of C24H27N5O2).

Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0) belongs to pyrimidine derivatives. Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. Pyrimidine derivatives have been used in a wide variety of pharmaceuticals including general anesthetics, anti-epilepsy medication, anti-malaria medication, drugs for treating high blood pressure, and HIV medication.Synthetic Route of C24H27N5O2

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia