Gu, Yu et al. published their research in Advanced Science (Weinheim, Germany) in 2021 | CAS: 219580-11-7

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. We all know its importance to life – pyrimidine and purine bases are included in the structure of DNA and RNA.Application In Synthesis of 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea

AZD9291 Resistance Reversal Activity of a pH-Sensitive Nanocarrier Dual-Loaded with Chloroquine and FGFR1 Inhibitor in NSCLC was written by Gu, Yu;Lai, Songtao;Dong, Yang;Fu, Hao;Song, Liwei;Chen, Tianxiang;Duan, Yourong;Zhang, Zhen. And the article was included in Advanced Science (Weinheim, Germany) in 2021.Application In Synthesis of 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea The following contents are mentioned in the article:

AZD9291 can effectively prolong survival of non-small cell lung cancer (NSCLC) patients. Unfortunately, the mechanism of its acquired drug resistance is largely unknown. This study shows that autophagy and fibroblast growth factor receptor 1 signaling pathways are both activated in AZD9291 resistant NSCLC, and inhibition of them, resp., by chloroquine (CQ) and PD173074 can synergistically reverse AZD9291 resistance. Herein, a coloaded CQ and PD173074 pH-sensitive shell-core nanoparticles CPP-cRGD is developed to reverse AZD9291 resistance in NSCLC. CPP-cRGD has a high encapsulation rate and stability, and can effectively prevent the degradation of drugs in circulation process. CPP-cRGD can target tumor cells by enhanced permeability and retention effect and the cRGD peptide. The pH-sensitive CaP shell can realize lysosome escape and then release drugs successively. The combination of CPP-cRGD and AZD9291 significantly induces a higher rate of apoptosis, more G0/G1 phase arrest, and reduces proliferation of resistant cell lines by downregulation of p-ERK1/2 in vitro. CQ in CPP-cRGD can block protective autophagy induced by both AZD9291 and PD173074. CPP-cRGD combined with AZD9291 shows adequate tumor enrichment, low toxicity, and excellent antitumor effect in nude mice. It provides a novel multifunctional nanoparticle to overcome AZD9291 resistance for potential clin. applications. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7Application In Synthesis of 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea).

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. We all know its importance to life – pyrimidine and purine bases are included in the structure of DNA and RNA.Application In Synthesis of 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Zhang, Yi et al. published their research in Journal of Chromatography A in 2020 | CAS: 1373422-53-7

3-((2-(Pyridin-2-yl)-6-(1,2,4,5-tetrahydro-3H-benzo[d]azepin-3-yl)pyrimidin-4-yl)amino)propanoic acid (cas: 1373422-53-7) belongs to pyrimidine derivatives. Pyrimidines are isomeric with two other forms of diazines: pyridazine, with the nitrogen atoms in the 1 and 2 positions; and pyrazine, with the nitrogen atoms in the 1 and 4 positions. Therapy for fungal infections is based mainly on four classes of antifungals: azoles, echinocandins, polyenes, and pyrimidine analogs.Quality Control of 3-((2-(Pyridin-2-yl)-6-(1,2,4,5-tetrahydro-3H-benzo[d]azepin-3-yl)pyrimidin-4-yl)amino)propanoic acid

Screening of inhibitors against histone demethylation jumonji domain-containing protein 3 by capillary electrophoresis was written by Zhang, Yi;Lou, Chunli;Xu, Yao;Li, Jing;Qian, Shanshan;Li, Feng;Kang, Jingwu. And the article was included in Journal of Chromatography A in 2020.Quality Control of 3-((2-(Pyridin-2-yl)-6-(1,2,4,5-tetrahydro-3H-benzo[d]azepin-3-yl)pyrimidin-4-yl)amino)propanoic acid The following contents are mentioned in the article:

Jumonji domain-containing proteins (JMJDs) play an important role in the epigenetic regulation of gene expression. Aberrant regulation of histone modification has been observed in the progression of a variety of diseases, such as neurol. disorders and cancer. Therefore, discovery of selective modulators of JMJDs is very attractive in new drug discovery. Herein, a simple capillary electrophoresis (CE) method was developed for screening of inhibitors against JMJD3. A known JMJD3 inhibitor GSK-J1, 5-carboxyfluorescein labeled substrate peptide with an amino acid sequence of KAPRKQLATKAARK(me3)SAPATGG (truncated from histone H3), as well as a small chem. library composed of 37 purified natural compounds and 30 natural extracts were used for method development and validation. The separation of substrate from its demethylated product was achieved by addition of polycation hexadimethrine bromide (HDB) in the running buffer. The enzyme activity was thus assayed accurately through separating the demethylated product from the substrate and then measuring the peak area of the product. The enzyme inhibition can be read out by comparing the peak area of the demethylated product obtained in the present of inhibitors and that of the neg. control in the absence of any inhibitor. The merit of the method is proved by discovering two new JMJD3 inhibitors: salvianic acid A and puerarin 6”-O-xyloside. This study involved multiple reactions and reactants, such as 3-((2-(Pyridin-2-yl)-6-(1,2,4,5-tetrahydro-3H-benzo[d]azepin-3-yl)pyrimidin-4-yl)amino)propanoic acid (cas: 1373422-53-7Quality Control of 3-((2-(Pyridin-2-yl)-6-(1,2,4,5-tetrahydro-3H-benzo[d]azepin-3-yl)pyrimidin-4-yl)amino)propanoic acid).

3-((2-(Pyridin-2-yl)-6-(1,2,4,5-tetrahydro-3H-benzo[d]azepin-3-yl)pyrimidin-4-yl)amino)propanoic acid (cas: 1373422-53-7) belongs to pyrimidine derivatives. Pyrimidines are isomeric with two other forms of diazines: pyridazine, with the nitrogen atoms in the 1 and 2 positions; and pyrazine, with the nitrogen atoms in the 1 and 4 positions. Therapy for fungal infections is based mainly on four classes of antifungals: azoles, echinocandins, polyenes, and pyrimidine analogs.Quality Control of 3-((2-(Pyridin-2-yl)-6-(1,2,4,5-tetrahydro-3H-benzo[d]azepin-3-yl)pyrimidin-4-yl)amino)propanoic acid

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Wu, Weijun et al. published their research in Cellular & Molecular Immunology in 2019 | CAS: 1373423-53-0

Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0) belongs to pyrimidine derivatives. Pyrimidine also found in many synthetic compounds such as barbiturates and the HIV drug, zidovudine. As nucleotides in DNA and RNA, pyrimidine nucleotide derivatives have a wide range of biological applications. For example, pyrimidine derivatives are useful in DNA repair studies involving cancer and epigenetics.Safety of Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate

Cystathionine-γ-lyase ameliorates the histone demethylase JMJD3-mediated autoimmune response in rheumatoid arthritis was written by Wu, Weijun;Qin, Ming;Jia, Wanwan;Huang, Zheng;Li, Zhongzheng;Yang, Di;Huang, Mengwei;Xiao, Chenxi;Long, Fen;Mao, Jianchun;Moore, Philip K.;Liu, Xinhua;Zhu, Yi Zhun. And the article was included in Cellular & Molecular Immunology in 2019.Safety of Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate The following contents are mentioned in the article:

Cystathionine-γ-lyase (CSE), an enzyme associated with hydrogen sulfide (H2S) production, is an important endogenous regulator of inflammation. Jumonji domain-containing protein 3 (JMJD3) is implicated in the immune response and inflammation. Here, we investigated the potential contribution of JMJD3 to endogenous CSE-mediated inflammation in rheumatoid arthritis (RA). Upregulated CSE and JMJD3 were identified in synovial fibroblasts (SFs) from RA patients as well as in the joints of arthritic mice. Knocking down CSE augmented inflammation in IL-1β-induced SFs by increasing JMJD3 expression. In addition, CSE-/- mice with collagen-induced arthritis (CIA) developed severe joint inflammation and bone erosion. Conversely, overexpressing CSE inhibited JMJD3 expression by the transcription factor Sp-1 and was accompanied by reduced inflammation in IL-1β-treated SFs. Furthermore, JMJD3 silencing or the administration of the JMJD3 inhibitor GSK-J4 significantly decreased the inflammatory response in IL-1β-treated SFs, mainly by controlling the methylation status of H3K27me3 at the promoter of its target genes. GSK-J4 markedly attenuated the severity of arthritis in CIA mice. In conclusion, suppressing JMJD3 expression by the transcription factor Sp-1 is likely responsible for the ability of CSE to neg. modulate the inflammatory response and reduce the progression of RA. This study involved multiple reactions and reactants, such as Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0Safety of Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate).

Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0) belongs to pyrimidine derivatives. Pyrimidine also found in many synthetic compounds such as barbiturates and the HIV drug, zidovudine. As nucleotides in DNA and RNA, pyrimidine nucleotide derivatives have a wide range of biological applications. For example, pyrimidine derivatives are useful in DNA repair studies involving cancer and epigenetics.Safety of Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Zhou, Jie et al. published their research in Journal of Infectious Diseases in 2021 | CAS: 219580-11-7

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. The pyrimidine derivatives can easily interact with enzymes, genetic materials, and bio components within the cell. As nucleotides in DNA and RNA, pyrimidine nucleotide derivatives have a wide range of biological applications. For example, pyrimidine derivatives are useful in DNA repair studies involving cancer and epigenetics.Electric Literature of C28H41N7O3

Is SARS-CoV-2 infection a risk factor for early pregnancy loss? ACE2 and TMPRSS2 coexpression and persistent replicative infection in primitive trophoblast was written by Zhou, Jie;Choi, Sehee;Liu, Heidi;Zhang, Jialin;Tian, Yuchen;Edlow, Andrea G.;Ezashi, Toshihiko;Roberts, R. Michael;Ma, Wenjun;Schust, Danny J.. And the article was included in Journal of Infectious Diseases in 2021.Electric Literature of C28H41N7O3 The following contents are mentioned in the article:

SARS-CoV-2 infection in term placenta is rare. However, growing evidence suggests that susceptibility of the human placenta to infection may vary by gestational age and pathogen. For several viral infections, susceptibility appears to be greatest during early gestation. Peri-implantation placental infections that result in pre-clin. pregnancy loss would typically go undetected. Little is known about the effects of SARS-CoV-2 on the peri-implantation human placenta since this time in pregnancy can only be modeled in vitro. The author used a human embryonic stem cell (hESC)-derived model of peri-implantation placental development to assess patterns of ACE2 and TMPRSS2 transcription and protein expression in primitive trophoblast. The author then infected the same trophoblast cell model with a clin. isolate of SARS-CoV-2 and documented infection dynamics. ACE2 and TMPRSS2 were transcribed and translated in hESC-derived trophoblast, with preferential expression in syncytialized cells. These same cells supported replicative and persistent infection by SARS-CoV-2, while non-syncytialized trophoblast cells in the same cultures did not. Co-expression of ACE2 and TMPRSS2 in hESC-derived trophoblast and the robust and replicative infection limited to syncytiotrophoblast equivalent support the hypothesis that increased viral susceptibility may be a defining characteristic of primitive trophoblast. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7Electric Literature of C28H41N7O3).

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. The pyrimidine derivatives can easily interact with enzymes, genetic materials, and bio components within the cell. As nucleotides in DNA and RNA, pyrimidine nucleotide derivatives have a wide range of biological applications. For example, pyrimidine derivatives are useful in DNA repair studies involving cancer and epigenetics.Electric Literature of C28H41N7O3

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Cruickshank, M. N. et al. published their research in Leukemia in 2017 | CAS: 1373423-53-0

Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0) belongs to pyrimidine derivatives. The pyrimidine derivatives can easily interact with enzymes, genetic materials, and bio components within the cell. Pyrimidine derivatives also play an important role in drug development, either in concert with other compounds or on their own.Application of 1373423-53-0

Systematic chemical and molecular profiling of MLL-rearranged infant acute lymphoblastic leukemia reveals efficacy of romidepsin was written by Cruickshank, M. N.;Ford, J.;Cheung, L. C.;Heng, J.;Singh, S.;Wells, J.;Failes, T. W.;Arndt, G. M.;Smithers, N.;Prinjha, R. K.;Anderson, D.;Carter, K. W.;Gout, A. M.;Lassmann, T.;O’Reilly, J.;Cole, C. H.;Kotecha, R. S.;Kees, U. R.. And the article was included in Leukemia in 2017.Application of 1373423-53-0 The following contents are mentioned in the article:

To address the poor prognosis of mixed lineage leukemia (MLL)-rearranged infant acute lymphoblastic leukemia (iALL), we generated a panel of cell lines from primary patient samples and investigated cytotoxic responses to contemporary and novel Food and Drug Administration-approved chemotherapeutics. To characterize representation of primary disease within cell lines, mol. features were compared using RNA-sequencing and cytogenetics. High-throughput screening revealed variable efficacy of currently used drugs, however identified consistent efficacy of three novel drug classes: proteasome inhibitors, histone deacetylase inhibitors and cyclin-dependent kinase inhibitors. Gene expression of drug targets was highly reproducible comparing iALL cell lines to matched primary specimens. Histone deacetylase inhibitors, including romidepsin (ROM), enhanced the activity of a key component of iALL therapy, cytarabine (ARAC) in vitro and combined administration of ROM and ARAC to xenografted mice further reduced leukemia burden. Mol. studies showed that ROM reduces expression of cytidine deaminase, an enzyme involved in ARAC deactivation, and enhances the DNA damage-response to ARAC. In conclusion, we present a valuable resource for drug discovery, including the first systematic anal. of transcriptome reproducibility in vitro, and have identified ROM as a promising therapeutic for MLL-rearranged iALL. This study involved multiple reactions and reactants, such as Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0Application of 1373423-53-0).

Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0) belongs to pyrimidine derivatives. The pyrimidine derivatives can easily interact with enzymes, genetic materials, and bio components within the cell. Pyrimidine derivatives also play an important role in drug development, either in concert with other compounds or on their own.Application of 1373423-53-0

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Karpel-Massler, Georg et al. published their research in Molecular Cancer Therapeutics in 2013 | CAS: 219580-11-7

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidines are isomeric with two other forms of diazines: pyridazine, with the nitrogen atoms in the 1 and 2 positions; and pyrazine, with the nitrogen atoms in the 1 and 4 positions. We all know its importance to life – pyrimidine and purine bases are included in the structure of DNA and RNA.Safety of 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea

Combined Inhibition of HER1/EGFR and RAC1 Results in a Synergistic Antiproliferative Effect on Established and Primary Cultured Human Glioblastoma Cells was written by Karpel-Massler, Georg;Westhoff, M.-Andrew;Zhou, Shaoxia;Nonnenmacher, Lisa;Dwucet, Annika;Kast, Richard E.;Bachem, Max G.;Wirtz, Christian R.;Debatin, Klaus-Michael;Halatsch, Marc-Eric. And the article was included in Molecular Cancer Therapeutics in 2013.Safety of 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea The following contents are mentioned in the article:

Glioblastoma is the most frequent brain tumor of glial origin in adults. With the best available standard-of-care, patients with this disease have a life expectancy of only approx. 15 mo after diagnosis. Because the EGF receptor (HER1/EGFR) is one of the most commonly dysregulated oncogenes in glioblastoma, HER1/EGFR-targeted agents, such as erlotinib, were expected to provide a therapeutic benefit. However, their application in the clin. setting failed. Seeking an explanation for this finding, we previously identified several candidate genes for resistance of human glioblastoma cell lines toward erlotinib. On the basis of this panel of genes, we aimed at identifying drugs that synergistically enhance the antiproliferative effect of erlotinib on established and primary glioblastoma cell lines. We found that NSC23766, an inhibitor of RAC1, enhanced the antineoplastic effects of erlotinib in U87MG, T98MG, and A172MG glioblastoma cell lines for the most part in a synergistic or at least in an additive manner. In addition, the synergistic antiproliferative effect of erlotinib and NSC23766 was confirmed in primary cultured cells, indicating a common underlying cellular and mol. mechanism in glioblastoma. Therefore, agents that suppress RAC1 activation may be useful therapeutic partners for erlotinib in a combined targeted treatment of glioblastoma. Mol Cancer Ther; 12(9); 1783-95. ©2013 AACR. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7Safety of 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea).

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidines are isomeric with two other forms of diazines: pyridazine, with the nitrogen atoms in the 1 and 2 positions; and pyrazine, with the nitrogen atoms in the 1 and 4 positions. We all know its importance to life – pyrimidine and purine bases are included in the structure of DNA and RNA.Safety of 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Cao, Zhi et al. published their research in Cell Death & Disease in 2021 | CAS: 1373423-53-0

Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0) belongs to pyrimidine derivatives. Pyrimidines are isomeric with two other forms of diazines: pyridazine, with the nitrogen atoms in the 1 and 2 positions; and pyrazine, with the nitrogen atoms in the 1 and 4 positions. Pyrimidine derivatives have been used in a wide variety of pharmaceuticals including general anesthetics, anti-epilepsy medication, anti-malaria medication, drugs for treating high blood pressure, and HIV medication.Reference of 1373423-53-0

KDM6B is an androgen regulated gene and plays oncogenic roles by demethylating H3K27me3 at cyclin D1 promoter in prostate cancer was written by Cao, Zhi;Shi, Xiaolei;Tian, Feng;Fang, Yu;Wu, Jason Boyang;Mrdenovic, Stefan;Nian, Xinwen;Ji, Jin;Xu, Huan;Kong, Chen;Xu, Yalong;Chen, Xi;Huang, Yuhua;Wei, Xuedong;Yu, Yongwei;Yang, Bo;Chung, Leland W. K.;Wang, Fubo. And the article was included in Cell Death & Disease in 2021.Reference of 1373423-53-0 The following contents are mentioned in the article:

Abstract: Lysine (K)-specific demethylase 6B (KDM6B), a stress-inducible H3K27me3 demethylase, plays oncogenic or antitumoral roles in malignant tumors depending on the type of tumor cell. However, how this histone modifier affects the progression of prostate cancer (PCa) is still unknown. Here we analyzed sequenced gene expression data and tissue microarray to explore the expression features and prognostic value of KDM6B in PCa. Further, we performed in vitro cell biol. experiments and in vivo nude mouse models to reveal the biol. function, upstream and downstream regulation mechanism of KDM6B. In addition, we investigated the effects of a KDM6B inhibitor, GSK-J4, on PCa cells. GSK-J4 administration could significantly suppress the biol. function of KDM6B in PCa cells. KDM6B is involved in the development of castration-resistant prostate cancer (CRPC), and combination of MDV3100 plus GSK-J4 is effective for CRPC and MDV3100-resistant CRPC. Mechanism exploration revealed that androgen receptor can decrease the transcription of KDM6B and that KDM6B demethylates H3K27me3 at the cyclin D1 promoter and cooperates with smad2/3 to prompt the expression of cyclin D1. In conclusion, our study demonstrates that KDM6B is an androgen receptor regulated gene and plays oncogenic roles by promoting cyclin D1 transcription in PCa and GSK-J4 has the potential to be a promising agent for the treatment of PCa. This study involved multiple reactions and reactants, such as Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0Reference of 1373423-53-0).

Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0) belongs to pyrimidine derivatives. Pyrimidines are isomeric with two other forms of diazines: pyridazine, with the nitrogen atoms in the 1 and 2 positions; and pyrazine, with the nitrogen atoms in the 1 and 4 positions. Pyrimidine derivatives have been used in a wide variety of pharmaceuticals including general anesthetics, anti-epilepsy medication, anti-malaria medication, drugs for treating high blood pressure, and HIV medication.Reference of 1373423-53-0

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Vrijens, Pieter et al. published their research in Journal of General Virology in 2019 | CAS: 219580-11-7

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. Pyrimidine derivatives also play an important role in drug development, either in concert with other compounds or on their own.COA of Formula: C28H41N7O3

Influenza virus entry via the GM3 ganglioside-mediated platelet-derived growth factor receptor β signalling pathway was written by Vrijens, Pieter;Noppen, Sam;Boogaerts, Talitha;Vanstreels, Els;Ronca, Roberto;Chiodelli, Paola;Laporte, Manon;Vanderlinden, Evelien;Liekens, Sandra;Stevaert, Annelies;Naesens, Lieve. And the article was included in Journal of General Virology in 2019.COA of Formula: C28H41N7O3 The following contents are mentioned in the article:

This requires a better understanding of virus- host interactions during the entry process, including the role of receptor tyrosine kinases (RTKs). To search for cellular targets, we evaluated a panel of 276 protein kinase inhibitors in a multicycle antiviral assay in Madin-Darby canine kidney cells. The RTK inhibitor Ki8751 displayed robust anti-influenza A and B virus activity and was selected for mechanistic investigations. Ki8751 efficiently disrupted the endocytic process of influenza virus in different cell lines carrying plateletderived growth factor receptor β (PDGFRb), an RTK that is known to act at GM3 ganglioside-pos. lipid rafts. The more efficient virus entry in CHO-K1 cells compared to the wild-type ancestor (CHO-wt) cells indicated a pos. effect of GM3, which is abundant in CHO-K1 but not in CHO-wt cells. Entering virus localized to GM3-pos. lipid rafts and the PDGFRbcontaining endosomal compartment. PDGFRβ/GM3-dependent virus internalization involved PDGFRβ phosphorylation, which was potently inhibited by Ki8751, and desialylation of activated PDGFRb by the viral neuraminidase. Virus uptake coincided with strong activation of the Raf/MEK/Erk cascade, but not of PI3K/Akt or phospholipase C-γ. We conclude that influenza virus efficiently hijacks the GM3-enhanced PDGFR β signaling pathway for cell penetration, providing an opportunity for host cell-targeting antiviral intervention. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7COA of Formula: C28H41N7O3).

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. Pyrimidine derivatives also play an important role in drug development, either in concert with other compounds or on their own.COA of Formula: C28H41N7O3

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Hao, Weifeng et al. published their research in Journal of Infection and Chemotherapy in 2021 | CAS: 1373423-53-0

Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0) belongs to pyrimidine derivatives. Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. As nucleotides in DNA and RNA, pyrimidine nucleotide derivatives have a wide range of biological applications. For example, pyrimidine derivatives are useful in DNA repair studies involving cancer and epigenetics.Computed Properties of C24H27N5O2

Identification of disulfiram as a potential antifungal drug by screening small molecular libraries was written by Hao, Weifeng;Qiao, Dan;Han, Ying;Du, Ning;Li, Xuefen;Fan, Yufeng;Ge, Xuejun;Zhang, Heyu. And the article was included in Journal of Infection and Chemotherapy in 2021.Computed Properties of C24H27N5O2 The following contents are mentioned in the article:

Candida albicans and Candida auris strains are common causative species of Candidiasis. The limited number of antifungal drugs and the current situation of resistance to existing antifungals force us to search for new antifungal alternatives. In this work, primary screening of small mol. libraries (Metabolism Compound Library and Epigenetics Compound Library) consisting of 584 compounds against Candida albicans SC5314 was performed. The dose-response assays, XTT assays, SEM and confocal laser scanning microscopy were used to confirm the antifungal activities of the selected compounds against Candida strains. Through the primary screening, we identified five compounds (U73122, disulfiram, BSK805, BIX01294, and GSKJ4) that inhibited strains growth ≥ 80% for dose-response assays. Disulfiram was identified as the most potent repositionable antifungal drug with 50% growth inhibition detected at a concentration as low as 1 mg/L. The further results showed the antifungal activity of disulfiram against biofilm formation of Candida strains with a 50% min. inhibitory concentration ranging from 32 to 128 mg/L. Further observations by SEM and confocal laser scanning microscopy confirmed the destruction of biofilm architecture and the change of biofilm morphol. after being exposed to disulfiram. The study indicated the potential clin. application of disulfiram as a promising antifungal drug against candidiasis. This study involved multiple reactions and reactants, such as Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0Computed Properties of C24H27N5O2).

Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0) belongs to pyrimidine derivatives. Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. As nucleotides in DNA and RNA, pyrimidine nucleotide derivatives have a wide range of biological applications. For example, pyrimidine derivatives are useful in DNA repair studies involving cancer and epigenetics.Computed Properties of C24H27N5O2

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Zhang, Bo-Yin et al. published their research in Neurochemical Research in 2021 | CAS: 1373423-53-0

Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0) belongs to pyrimidine derivatives. Pyrimidines are isomeric with two other forms of diazines: pyridazine, with the nitrogen atoms in the 1 and 2 positions; and pyrazine, with the nitrogen atoms in the 1 and 4 positions. For example, the neurotoxin tetrodotoxin is a pyrimidine derivative. It is found in a number of species including the Japanese puffer fish, the blue-ringed octopus, and the orange-bellied newt. Tetrodotoxin prevents the transmission of nerve signals and can result in paralysis and death.Electric Literature of C24H27N5O2

Unlocking the Recovery Potential: JMJD3 Inhibition-Mediated SAPK/JNK Signaling Inactivation Supports Endogenous Oligodendrocyte-Lineage Commitment Post Mammalian Spinal Cord Injury was written by Zhang, Bo-Yin;Zhu, Qingsan;Ma, Yihang;Fan, Yang;Zhu, Yuhang;Chang, Pengyu. And the article was included in Neurochemical Research in 2021.Electric Literature of C24H27N5O2 The following contents are mentioned in the article:

Spinal cord injury (SCI) induced catastrophic neurol. disability is often incurable at present. The injury triggered immediately oligodendrocytes loss and overwhelming demyelination are regarded as an insurmountable barrier to SCI recovery. To date, effective strategy to promote the endogenous oligodendrocytes replacement post SCI remains elusive. Epigenetic modifications are emerging as critical mol. switches of gene expression in CNS. However, the epigenetic mechanisms underlying oligodendrogenesis post SCI yet to be discovered. In this study, we report that H3K27me3 demethylase JMJD3 exists as a pivotal epigenetic regulator which manipulates the endogenous oligodendrogenesis post SCI. We found that JMJD3 inhibition promotes the oligodendrocyte linage commitment of neural stem/progenitor cells (NPCs) in vitro and in vivo. Moreover, we demonstrated that JMJD3 inhibition mediated SAPK/JNK signaling inactivation is functionally necessary for endogenous oligodendrocyte-lineage commitment post SCI. Our results also suggested that JMJD3 is downstream of SAPK/JNK pathway, and capable of translates SCI induced SAPK/JNK signaling into epigenetic codes readable by spinal cord endogenous NPCs. Taken together, our findings provide novel evidence of JMJD3 mediated oligodendrocyte-lineage commitment orchestration post SCI, which would be a potential epigenetic approach to induce the mature mammalian endogenous recovery. This study involved multiple reactions and reactants, such as Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0Electric Literature of C24H27N5O2).

Ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate (cas: 1373423-53-0) belongs to pyrimidine derivatives. Pyrimidines are isomeric with two other forms of diazines: pyridazine, with the nitrogen atoms in the 1 and 2 positions; and pyrazine, with the nitrogen atoms in the 1 and 4 positions. For example, the neurotoxin tetrodotoxin is a pyrimidine derivative. It is found in a number of species including the Japanese puffer fish, the blue-ringed octopus, and the orange-bellied newt. Tetrodotoxin prevents the transmission of nerve signals and can result in paralysis and death.Electric Literature of C24H27N5O2

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia