Volpi, Stefano’s team published research in Organic Letters in 23 | CAS: 186046-81-1

Organic Letters published new progress about 186046-81-1. 186046-81-1 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Benzene,Amide,Others,PNA,, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(4-(((benzhydryloxy)carbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C9H8O4, HPLC of Formula: 186046-81-1.

Volpi, Stefano published the artcileSubmonomeric strategy with minimal protection for the synthesis of C(2)-modified peptide nucleic acids, HPLC of Formula: 186046-81-1, the publication is Organic Letters (2021), 23(3), 902-907, database is CAplus and MEDLINE.

A novel synthesis of C(2)-modified peptide nucleic acids (PNAs) is proposed, using a submonomeric strategy with minimally protected building blocks, which allowed a reduction in the required synthetic steps. N(3)-unprotected, D-Lys- and D-Arg-based backbones were used to obtain pos. charged PNAs with high optical purity, as inferred from chiral GC measurements. “Chiral-box” PNAs targeting the G12D point mutation of the KRAS gene were produced using this method, showing improved sequence selectivity for the mutated- vs wild-type DNA strand with respect to unmodified PNAs.

Organic Letters published new progress about 186046-81-1. 186046-81-1 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Benzene,Amide,Others,PNA,, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(4-(((benzhydryloxy)carbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C9H8O4, HPLC of Formula: 186046-81-1.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia

Volpi, Stefano’s team published research in Organic Letters in 23 | CAS: 172405-16-2

Organic Letters published new progress about 172405-16-2. 172405-16-2 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Amide, name is 2-(4-((tert-Butoxycarbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetic acid, and the molecular formula is C8H8O2, Application of 2-(4-((tert-Butoxycarbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetic acid.

Volpi, Stefano published the artcileSubmonomeric strategy with minimal protection for the synthesis of C(2)-modified peptide nucleic acids, Application of 2-(4-((tert-Butoxycarbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetic acid, the publication is Organic Letters (2021), 23(3), 902-907, database is CAplus and MEDLINE.

A novel synthesis of C(2)-modified peptide nucleic acids (PNAs) is proposed, using a submonomeric strategy with minimally protected building blocks, which allowed a reduction in the required synthetic steps. N(3)-unprotected, D-Lys- and D-Arg-based backbones were used to obtain pos. charged PNAs with high optical purity, as inferred from chiral GC measurements. “Chiral-box” PNAs targeting the G12D point mutation of the KRAS gene were produced using this method, showing improved sequence selectivity for the mutated- vs wild-type DNA strand with respect to unmodified PNAs.

Organic Letters published new progress about 172405-16-2. 172405-16-2 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Amide, name is 2-(4-((tert-Butoxycarbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetic acid, and the molecular formula is C8H8O2, Application of 2-(4-((tert-Butoxycarbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetic acid.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia

Volpi, Stefano’s team published research in Organic Letters in 23 | CAS: 169396-92-3

Organic Letters published new progress about 169396-92-3. 169396-92-3 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Amide,Others,PNA, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C5H12O2, Safety of 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid.

Volpi, Stefano published the artcileSubmonomeric strategy with minimal protection for the synthesis of C(2)-modified peptide nucleic acids, Safety of 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, the publication is Organic Letters (2021), 23(3), 902-907, database is CAplus and MEDLINE.

A novel synthesis of C(2)-modified peptide nucleic acids (PNAs) is proposed, using a submonomeric strategy with minimally protected building blocks, which allowed a reduction in the required synthetic steps. N(3)-unprotected, D-Lys- and D-Arg-based backbones were used to obtain pos. charged PNAs with high optical purity, as inferred from chiral GC measurements. “Chiral-box” PNAs targeting the G12D point mutation of the KRAS gene were produced using this method, showing improved sequence selectivity for the mutated- vs wild-type DNA strand with respect to unmodified PNAs.

Organic Letters published new progress about 169396-92-3. 169396-92-3 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Amide,Others,PNA, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C5H12O2, Safety of 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia

Fortunati, Simone’s team published research in Biosensors & Bioelectronics in 129 | CAS: 186046-81-1

Biosensors & Bioelectronics published new progress about 186046-81-1. 186046-81-1 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Benzene,Amide,Others,PNA,, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(4-(((benzhydryloxy)carbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C39H35N5O8, Synthetic Route of 186046-81-1.

Fortunati, Simone published the artcileNovel amperometric genosensor based on peptide nucleic acid (PNA) probes immobilized on carbon nanotubes-screen printed electrodes for the determination of trace levels of non-amplified DNA in genetically modified (GM) soy, Synthetic Route of 186046-81-1, the publication is Biosensors & Bioelectronics (2019), 7-14, database is CAplus and MEDLINE.

A novel amperometric genosensor based on PNA probes covalently bound on the surface of Single Walled Carbon Nanotubes – Screen Printed Electrodes (SWCNT-SPEs) was developed and validated in samples of non-amplified genomic DNA extracted from genetically modified (GM)-Soy. The sandwich assay is based on a first recognition of a 20-mer portion of the target DNA by a complementary PNA Capture Probe (CP) and a second hybridization with a PNA Signalling Probe (SP), with a complementary sequence to a different portion of the target DNA. The SP was labeled with biotin to measure current signal by means of a final incubation of an Alk. Phosphatase-streptavidin conjugate (ALP-Strp). The electrochem. detection was carried out using hydroquinone diphosphate (HQDP) as enzymic substrate. The genoassay provided a linear range from 250 pM to 2.5 nM, LOD of 64 pM and LOQ of 215 pM Excellent selectivity towards one base mismatch (1-MM) or scrambled (SCR) sequences was obtained. A simple protocol for extraction and anal. of non-amplified soybean genomic DNA without sample treatment was developed and validated. Our study provides insight into how the outstanding recognition efficiency of PNAs can be combined with the unique properties of CNTs in terms of signal response enhancement for direct detection of genomic DNA samples at the level of interest without previous amplification.

Biosensors & Bioelectronics published new progress about 186046-81-1. 186046-81-1 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Benzene,Amide,Others,PNA,, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(4-(((benzhydryloxy)carbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C39H35N5O8, Synthetic Route of 186046-81-1.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia

Fortunati, Simone’s team published research in Biosensors & Bioelectronics in 129 | CAS: 169396-92-3

Biosensors & Bioelectronics published new progress about 169396-92-3. 169396-92-3 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Amide,Others,PNA, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C26H26N4O7, Synthetic Route of 169396-92-3.

Fortunati, Simone published the artcileNovel amperometric genosensor based on peptide nucleic acid (PNA) probes immobilized on carbon nanotubes-screen printed electrodes for the determination of trace levels of non-amplified DNA in genetically modified (GM) soy, Synthetic Route of 169396-92-3, the publication is Biosensors & Bioelectronics (2019), 7-14, database is CAplus and MEDLINE.

A novel amperometric genosensor based on PNA probes covalently bound on the surface of Single Walled Carbon Nanotubes – Screen Printed Electrodes (SWCNT-SPEs) was developed and validated in samples of non-amplified genomic DNA extracted from genetically modified (GM)-Soy. The sandwich assay is based on a first recognition of a 20-mer portion of the target DNA by a complementary PNA Capture Probe (CP) and a second hybridization with a PNA Signalling Probe (SP), with a complementary sequence to a different portion of the target DNA. The SP was labeled with biotin to measure current signal by means of a final incubation of an Alk. Phosphatase-streptavidin conjugate (ALP-Strp). The electrochem. detection was carried out using hydroquinone diphosphate (HQDP) as enzymic substrate. The genoassay provided a linear range from 250 pM to 2.5 nM, LOD of 64 pM and LOQ of 215 pM Excellent selectivity towards one base mismatch (1-MM) or scrambled (SCR) sequences was obtained. A simple protocol for extraction and anal. of non-amplified soybean genomic DNA without sample treatment was developed and validated. Our study provides insight into how the outstanding recognition efficiency of PNAs can be combined with the unique properties of CNTs in terms of signal response enhancement for direct detection of genomic DNA samples at the level of interest without previous amplification.

Biosensors & Bioelectronics published new progress about 169396-92-3. 169396-92-3 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Amide,Others,PNA, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C26H26N4O7, Synthetic Route of 169396-92-3.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia

Cheruiyot, Samwel K.’s team published research in ChemBioChem in 17 | CAS: 169396-92-3

ChemBioChem published new progress about 169396-92-3. 169396-92-3 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Amide,Others,PNA, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C26H26N4O7, Application In Synthesis of 169396-92-3.

Cheruiyot, Samwel K. published the artcileFluorescent 2-Aminopyridine Nucleobases for Triplex-Forming Peptide Nucleic Acids, Application In Synthesis of 169396-92-3, the publication is ChemBioChem (2016), 17(16), 1558-1562, database is CAplus and MEDLINE.

Development of new fluorescent peptide nucleic acids (PNAs) is important for fundamental research and practical applications. The goal of this study was the design of fluorogenic nucleobases for incorporation in triplex-forming PNAs. The underlying design principle was the use of a protonation event that accompanied binding of a 2-aminopyridine (M) nucleobase to a G-C base pair as an on switch for a fluorescence signal. Two fluorogenic nucleobases, 3-(1-phenylethynyl)-M and phenylpyrrolo-M, were designed, synthesized and studied. The new M derivatives provided modest enhancement of fluorescence upon protonation but showed reduced RNA binding affinity and quenching of fluorescence signal upon triple-helix formation with cognate double-stranded RNA. Our study illustrates the principal challenges of design and provides guidelines for future improvement of fluorogenic PNA nucleobases. The 3-(1-phenylethynyl)-M may be used as a fluorescent nucleobase to study PNA-RNA triple-helix formation.

ChemBioChem published new progress about 169396-92-3. 169396-92-3 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Amide,Others,PNA, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C26H26N4O7, Application In Synthesis of 169396-92-3.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia

Grabowski, Zbigniew R.’s team published research in Nouveau Journal de Chimie in 3 | CAS: 31401-45-3

Nouveau Journal de Chimie published new progress about 31401-45-3. 31401-45-3 belongs to pyrimidines, auxiliary class Pyrimidine,Amine, name is N,N-Dimethylpyrimidin-4-amine, and the molecular formula is C6H9N3, COA of Formula: C6H9N3.

Grabowski, Zbigniew R. published the artcileTwisted intramolecular charge transfer states (TICT). A new class of excited states with a full charge separation, COA of Formula: C6H9N3, the publication is Nouveau Journal de Chimie (1979), 3(7), 443-54, database is CAplus.

The dual fluorescence of N,N-dialkylanilines as well as the high polarity of the lowest excited singlet states of compounds containing perpendicular donor (D) and acceptor (A) orbitals is explained by a common phenomenon involving 1 electron transfer in this new class of excited states, TICT. The electronic structure, thermodn. and formation kinetics, dipole moments, and radiative and radiationless transitions of the TICT states are discussed. The TICT states are formed by D-A mols. as well as sym. biaryls and I.

Nouveau Journal de Chimie published new progress about 31401-45-3. 31401-45-3 belongs to pyrimidines, auxiliary class Pyrimidine,Amine, name is N,N-Dimethylpyrimidin-4-amine, and the molecular formula is C6H9N3, COA of Formula: C6H9N3.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia

Liu, Yang’s team published research in Biochemistry in 51 | CAS: 169396-92-3

Biochemistry published new progress about 169396-92-3. 169396-92-3 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Amide,Others,PNA, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C26H26N4O7, Synthetic Route of 169396-92-3.

Liu, Yang published the artcileInducible Alkylation of DNA by a Quinone Methide-Peptide Nucleic Acid Conjugate, Synthetic Route of 169396-92-3, the publication is Biochemistry (2012), 51(5), 1020-1027, database is CAplus and MEDLINE.

The reversibility of alkylation by a quinone methide intermediate (QM) avoids the irreversible consumption that plagues most reagents based on covalent chem. and allows for site specific reaction that is controlled by the thermodn. rather than kinetics of target association This characteristic was originally examined with an oligonucleotide QM conjugate, but broad application depends on alternative derivatives that are compatible with a cellular environment. Now, a peptide nucleic acid (PNA) derivative has been constructed and shown to exhibit an equivalent ability to deliver the reactive QM in a controlled manner. This new conjugate demonstrates high selectivity for a complementary sequence of DNA even when challenged with an alternative sequence containing a single T/T mismatch. Alternatively, alkylation of noncomplementary sequences is only possible when a template strand is present to colocalize the conjugate and its target. For efficient alkylation in this example, a single-stranded region of the target is required adjacent to the QM conjugate. Most importantly, the intrastrand self-adducts formed between the PNA and its attached QM remained active and reversible over more than 8 days in aqueous solution prior to reaction with a chosen target added subsequently.

Biochemistry published new progress about 169396-92-3. 169396-92-3 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Amide,Others,PNA, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C26H26N4O7, Synthetic Route of 169396-92-3.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia

Yang, Zhibo’s team published research in International Journal of Mass Spectrometry in 241 | CAS: 608-34-4

International Journal of Mass Spectrometry published new progress about 608-34-4. 608-34-4 belongs to pyrimidines, auxiliary class Pyrimidine,Amide, name is 3-Methylpyrimidine-2,4(1H,3H)-dione, and the molecular formula is C20H40O2, Application In Synthesis of 608-34-4.

Yang, Zhibo published the artcileInfluence of methylation on the properties of uracil and its noncovalent interactions with alkali metal ions. Threshold collision-induced dissociation and theoretical studies, Application In Synthesis of 608-34-4, the publication is International Journal of Mass Spectrometry (2005), 241(2-3), 225-242, database is CAplus.

The influence of methylation on the properties of uracil and its noncovalent interactions with alkali metal ions is investigated both exptl. and theor. Threshold collision-induced dissociation (CID) of M+(xMeU) with Xe is studied in a guided ion beam mass spectrometer. M+ include the following alkali metal ions: Li+, Na+, and K+. Five methylated uracils are examined, xMeU = 1-methyluracil, 3-methyluracil, 6-methyluracil, 1,3-dimethyluracil, and 5,6-dimethyluracil. In all cases endothermic loss of the intact nucleobase is the dominant reaction pathway, while ligand exchange to produce MXe+ is observed as a minor reaction pathway. The threshold regions of the cross sections are interpreted to extract 0 and 298 K bond dissociation energies (BDEs) for M+-xMeU after accounting for the effects of multiple ion-neutral collisions, kinetic and internal energies of the reactants, and dissociation lifetimes. Ab initio calculations at the MP2(full)/6-31G* level of theory are used to determine the structures of these complexes and provide mol. constants required for the thermochem. anal. of the exptl. data. Theor. bond dissociation energies are determined from single point energy calculations at the MP2(full)/6-211+G(2d,2p) level using the MP2(full)/6-31G* geometries. Excellent agreement between theory and experiment is found for the Na+ and K+ systems, while theory systematically underestimates the strength of binding in the Li+ systems. Theor. calculations are also performed to examine the influence of methylation on the acidities, proton affinities, and Watson-Crick base pairing energies. The present results are compared to earlier studies of uracil and 5-methyluracil to more fully elucidate the influence of methylation on the properties of uracil, its noncovalent interactions with alkali metal ions, and nucleic acid stability.

International Journal of Mass Spectrometry published new progress about 608-34-4. 608-34-4 belongs to pyrimidines, auxiliary class Pyrimidine,Amide, name is 3-Methylpyrimidine-2,4(1H,3H)-dione, and the molecular formula is C20H40O2, Application In Synthesis of 608-34-4.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia

Hinton, Shante’s team published research in Tetrahedron Letters in 53 | CAS: 56-05-3

Tetrahedron Letters published new progress about 56-05-3. 56-05-3 belongs to pyrimidines, auxiliary class Pyrimidine,Chloride,Amine,API, name is 2-Amino-4,6-dichloropyrimidine, and the molecular formula is C4H3Cl2N3, Related Products of pyrimidines.

Hinton, Shante published the artcileDeoxy derivatives of L-like 5′-noraristeromycin, Related Products of pyrimidines, the publication is Tetrahedron Letters (2012), 53(14), 1753-1755, database is CAplus and MEDLINE.

Several base variations of 2′- and 3′-deoxy derivatives of (+)-4′-deoxy-5′-noraristeromycin have been prepared from enantiomerically pure precursors following standard purine nucleoside construction. These carbocyclic nucleosides were evaluated against hepatitis B virus (HBV) and found to be inactive. No cytotoxicity to the cell line was observed

Tetrahedron Letters published new progress about 56-05-3. 56-05-3 belongs to pyrimidines, auxiliary class Pyrimidine,Chloride,Amine,API, name is 2-Amino-4,6-dichloropyrimidine, and the molecular formula is C4H3Cl2N3, Related Products of pyrimidines.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia