Metcalf, Gavin A. D.’s team published research in Analytical Chemistry (Washington, DC, United States) in 88 | CAS: 186046-81-1

Analytical Chemistry (Washington, DC, United States) published new progress about 186046-81-1. 186046-81-1 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Benzene,Amide,Others,PNA,, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(4-(((benzhydryloxy)carbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C39H35N5O8, SDS of cas: 186046-81-1.

Metcalf, Gavin A. D. published the artcileAmplification-Free Detection of Circulating microRNA Biomarkers from Body Fluids Based on Fluorogenic Oligonucleotide-Templated Reaction between Engineered Peptide Nucleic Acid Probes: Application to Prostate Cancer Diagnosis, SDS of cas: 186046-81-1, the publication is Analytical Chemistry (Washington, DC, United States) (2016), 88(16), 8091-8098, database is CAplus and MEDLINE.

Highly abundant in cells, microRNAs (or miRs) play a key role as regulators of gene expression. A proportion of them are also detectable in biofluids making them ideal noninvasive biomarkers for pathologies in which miR levels are aberrantly expressed, such as cancer. Peptide nucleic acids (PNAs) are engineered uncharged oligonucleotide analogs capable of hybridizing to complementary nucleic acids with high affinity and high specificity. Herein, novel PNA-based fluorogenic biosensors have been designed and synthesized that target miR biomarkers for prostate cancer (PCa). The sensing strategy is based on oligonucleotide-templated reactions where the only miR of interest serves as a matrix to catalyze an otherwise highly unfavorable fluorogenic reaction. Validated in vitro using synthetic RNAs, these newly developed biosensors were then shown to detect endogenous concentrations of miR in human blood samples without the need for any amplification step and with minimal sample processing. This low-cost, quant., and versatile sensing technol. has been tech. validated using gold-standard RT-qPCR. Compared to RT-qPCR however, this enzyme-free, isothermal blood test is amenable to incorporation into low-cost portable devices and could therefore be suitable for widespread public screening.

Analytical Chemistry (Washington, DC, United States) published new progress about 186046-81-1. 186046-81-1 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Benzene,Amide,Others,PNA,, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(4-(((benzhydryloxy)carbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C39H35N5O8, SDS of cas: 186046-81-1.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia

Metcalf, Gavin A. D.’s team published research in Analytical Chemistry (Washington, DC, United States) in 88 | CAS: 169396-92-3

Analytical Chemistry (Washington, DC, United States) published new progress about 169396-92-3. 169396-92-3 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Amide,Others,PNA, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C26H26N4O7, Related Products of pyrimidines.

Metcalf, Gavin A. D. published the artcileAmplification-Free Detection of Circulating microRNA Biomarkers from Body Fluids Based on Fluorogenic Oligonucleotide-Templated Reaction between Engineered Peptide Nucleic Acid Probes: Application to Prostate Cancer Diagnosis, Related Products of pyrimidines, the publication is Analytical Chemistry (Washington, DC, United States) (2016), 88(16), 8091-8098, database is CAplus and MEDLINE.

Highly abundant in cells, microRNAs (or miRs) play a key role as regulators of gene expression. A proportion of them are also detectable in biofluids making them ideal noninvasive biomarkers for pathologies in which miR levels are aberrantly expressed, such as cancer. Peptide nucleic acids (PNAs) are engineered uncharged oligonucleotide analogs capable of hybridizing to complementary nucleic acids with high affinity and high specificity. Herein, novel PNA-based fluorogenic biosensors have been designed and synthesized that target miR biomarkers for prostate cancer (PCa). The sensing strategy is based on oligonucleotide-templated reactions where the only miR of interest serves as a matrix to catalyze an otherwise highly unfavorable fluorogenic reaction. Validated in vitro using synthetic RNAs, these newly developed biosensors were then shown to detect endogenous concentrations of miR in human blood samples without the need for any amplification step and with minimal sample processing. This low-cost, quant., and versatile sensing technol. has been tech. validated using gold-standard RT-qPCR. Compared to RT-qPCR however, this enzyme-free, isothermal blood test is amenable to incorporation into low-cost portable devices and could therefore be suitable for widespread public screening.

Analytical Chemistry (Washington, DC, United States) published new progress about 169396-92-3. 169396-92-3 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Amide,Others,PNA, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C26H26N4O7, Related Products of pyrimidines.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia

Shrestha, Ritu’s team published research in Bioconjugate Chemistry in 23 | CAS: 186046-81-1

Bioconjugate Chemistry published new progress about 186046-81-1. 186046-81-1 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Benzene,Amide,Others,PNA,, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(4-(((benzhydryloxy)carbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C10H10O2, Formula: C39H35N5O8.

Shrestha, Ritu published the artcileDual Peptide Nucleic Acid- and Peptide-Functionalized Shell Cross-Linked Nanoparticles Designed to Target mRNA toward the Diagnosis and Treatment of Acute Lung Injury, Formula: C39H35N5O8, the publication is Bioconjugate Chemistry (2012), 23(3), 574-585, database is CAplus and MEDLINE.

In this work, multifunctional biosynthetic hybrid nanostructures were prepared and studied for their potential utility in the recognition and inhibition of mRNA sequences for inducible nitric oxide synthase (iNOS), which are overexpressed at sites of inflammation, such as in cases of acute lung injury. Shell cross-linked knedel-like polymer nanoparticles (SCKs) that present peptide nucleic acids, for binding to complementary mRNAs, and cell penetrating peptides (CPPs), to gain cell entry, along with fluorescent labels and sites for radiolabeling, were prepared by a series of robust, efficient, and versatile synthetic steps that proceeded from monomers to polymers to functional nanoparticles. Amphiphilic block graft copolymers having combinations of methoxy- and thioacetyl-terminated poly(ethylene glycol) (PEG) and DOTA-lysine units grafted from the backbone of poly(acrylic acid) (PAA) and extending with a backbone segment of poly(octadecyl acrylate-co-decyl acrylate) (P(ODA-co-DA)) were prepared by a combination of reversible addition-fragmentation chain transfer (RAFT) polymerization and chem. modification reactions, which were then used as the building blocks for the formation of well-defined SCKs decorated with reactive thiols accessible to the surface. Fluorescent labeling with Alexa Fluor 633 hydrazide was then accomplished by amidation with residual acrylic acid residues within the SCK shells. Finally, the PNAs and CPP units were covalently conjugated to the SCKs via Michael addition of thiols on the SCKs to maleimide units on the termini of PNAs and CPPs. Confirmation of the ability of the PNAs to bind selectively to the target iNOS mRNAs when tethered to the SCK nanoparticles was determined by in vitro competition experiments When attached to the SCKs having a hydrodynamic diameter of 60 ± 16 nm, the Kd values of the PNAs were ca. an order of magnitude greater than the free PNAs, while the mismatched PNA showed no significant binding.

Bioconjugate Chemistry published new progress about 186046-81-1. 186046-81-1 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Benzene,Amide,Others,PNA,, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(4-(((benzhydryloxy)carbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C10H10O2, Formula: C39H35N5O8.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia

Shrestha, Ritu’s team published research in Bioconjugate Chemistry in 23 | CAS: 169396-92-3

Bioconjugate Chemistry published new progress about 169396-92-3. 169396-92-3 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Amide,Others,PNA, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C48H47FeP, Related Products of pyrimidines.

Shrestha, Ritu published the artcileDual Peptide Nucleic Acid- and Peptide-Functionalized Shell Cross-Linked Nanoparticles Designed to Target mRNA toward the Diagnosis and Treatment of Acute Lung Injury, Related Products of pyrimidines, the publication is Bioconjugate Chemistry (2012), 23(3), 574-585, database is CAplus and MEDLINE.

In this work, multifunctional biosynthetic hybrid nanostructures were prepared and studied for their potential utility in the recognition and inhibition of mRNA sequences for inducible nitric oxide synthase (iNOS), which are overexpressed at sites of inflammation, such as in cases of acute lung injury. Shell cross-linked knedel-like polymer nanoparticles (SCKs) that present peptide nucleic acids, for binding to complementary mRNAs, and cell penetrating peptides (CPPs), to gain cell entry, along with fluorescent labels and sites for radiolabeling, were prepared by a series of robust, efficient, and versatile synthetic steps that proceeded from monomers to polymers to functional nanoparticles. Amphiphilic block graft copolymers having combinations of methoxy- and thioacetyl-terminated poly(ethylene glycol) (PEG) and DOTA-lysine units grafted from the backbone of poly(acrylic acid) (PAA) and extending with a backbone segment of poly(octadecyl acrylate-co-decyl acrylate) (P(ODA-co-DA)) were prepared by a combination of reversible addition-fragmentation chain transfer (RAFT) polymerization and chem. modification reactions, which were then used as the building blocks for the formation of well-defined SCKs decorated with reactive thiols accessible to the surface. Fluorescent labeling with Alexa Fluor 633 hydrazide was then accomplished by amidation with residual acrylic acid residues within the SCK shells. Finally, the PNAs and CPP units were covalently conjugated to the SCKs via Michael addition of thiols on the SCKs to maleimide units on the termini of PNAs and CPPs. Confirmation of the ability of the PNAs to bind selectively to the target iNOS mRNAs when tethered to the SCK nanoparticles was determined by in vitro competition experiments When attached to the SCKs having a hydrodynamic diameter of 60 ± 16 nm, the Kd values of the PNAs were ca. an order of magnitude greater than the free PNAs, while the mismatched PNA showed no significant binding.

Bioconjugate Chemistry published new progress about 169396-92-3. 169396-92-3 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Amide,Others,PNA, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C48H47FeP, Related Products of pyrimidines.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia

Hsieh, Wei-Che’s team published research in Journal of Organic Chemistry in 84 | CAS: 172405-16-2

Journal of Organic Chemistry published new progress about 172405-16-2. 172405-16-2 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Amide, name is 2-(4-((tert-Butoxycarbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetic acid, and the molecular formula is C11H15N3O5, COA of Formula: C11H15N3O5.

Hsieh, Wei-Che published the artcileSynthesis of (R)- and (S)-Fmoc-protected diethylene glycol gamma PNA monomers with high optical purity, COA of Formula: C11H15N3O5, the publication is Journal of Organic Chemistry (2019), 84(3), 1276-1287, database is CAplus and MEDLINE.

A robust synthetic route has been developed for preparing optically pure, Fmoc-protected diethylene glycol-containing (R)- and (S)-γPNA monomers. The strategy involves the application of 9-(4-bromophenyl)-9-fluorenyl as a temporary, safety-catch protecting group for the suppression of epimerization in the O-alkylation and reductive amination steps. The optical purities of the final monomers were determined to be greater than 99.5% ee, as assessed by 19F-NMR and HPLC. The new synthetic methodol. is well-suited for large-scale monomer production, with most synthetic steps providing excellent chem. yields without the need for chromatog. purification other than a simple workup and precipitation

Journal of Organic Chemistry published new progress about 172405-16-2. 172405-16-2 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Amide, name is 2-(4-((tert-Butoxycarbonyl)amino)-2-oxopyrimidin-1(2H)-yl)acetic acid, and the molecular formula is C11H15N3O5, COA of Formula: C11H15N3O5.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia

Kolli, Murali Krishna’s team published research in New Journal of Chemistry in 41 | CAS: 1059705-07-5

New Journal of Chemistry published new progress about 1059705-07-5. 1059705-07-5 belongs to pyrimidines, auxiliary class Pyrimidine, name is 5-Ethynyl-2-methoxypyrimidine, and the molecular formula is C7H6N2O, Synthetic Route of 1059705-07-5.

Kolli, Murali Krishna published the artcilePd-PEPPSI-IPentCl: a new highly efficient ligand-free and recyclable catalyst system for the synthesis of 2-substituted indoles via domino copper-free Sonogashira coupling/cyclization, Synthetic Route of 1059705-07-5, the publication is New Journal of Chemistry (2017), 41(16), 8187-8195, database is CAplus.

A pyridine-containing decidedly resourceful Pd-N-heterocyclic carbene complex, Pd-PEPPSI-IPentCl (PEPPSI = pyridine enhanced precatalyst preparation, stabilization, and initiation), prepared and used as a first class recyclable catalytic system for the synthesis of 2-substituted indoles I [X = H, Boc; R1 = H, 5-OMe, 6-i-Pr, 6-Cl, 5-NO2, 5,7-di-NO2; R2 = Ph, 4-ClC6H4, 2-naphthyl, pyrimidin-5-yl, etc.] via domino copper-free Sonogashira coupling/cyclization. The catalyst showed a greater performance in the cascade reaction of various 2-bromo anilines with different terminal aromatic acetylenes under mild (60 °C) and green conditions (ethanol:water) even in the absence of a copper catalyst and an inert atm. It was confirmed that 0.1 mol% of the catalyst was sufficient, recyclable and could be reused up to six cycles.

New Journal of Chemistry published new progress about 1059705-07-5. 1059705-07-5 belongs to pyrimidines, auxiliary class Pyrimidine, name is 5-Ethynyl-2-methoxypyrimidine, and the molecular formula is C7H6N2O, Synthetic Route of 1059705-07-5.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia

Hasanein, Ahmed A.’s team published research in International Journal of Quantum Chemistry in 111 | CAS: 56-05-3

International Journal of Quantum Chemistry published new progress about 56-05-3. 56-05-3 belongs to pyrimidines, auxiliary class Pyrimidine,Chloride,Amine,API, name is 2-Amino-4,6-dichloropyrimidine, and the molecular formula is C4H3Cl2N3, Category: pyrimidines.

Hasanein, Ahmed A. published the artcileDFT calculations of amine-imine tautomerism in some pyrimidine derivatives and their 1:1 and 1:2 complexes with water, Category: pyrimidines, the publication is International Journal of Quantum Chemistry (2011), 111(15), 3993-4010, database is CAplus.

Amine-Imine tautomerization in 2-amino-pyrimidine (I), 2-amino-4,6-dichloropyrimidine (II), 2-amino-4,6-dimethylpyrimidine (III), and 2-amino-4,6-dimethoxypyrimidine (IV) and their 1:1 and 1:2 H-bonded complexes with water have been studied using the B3LYP/6-31++G** method. Optimum mol. geometries, electronic properties, and energetics of these systems have been discussed. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011.

International Journal of Quantum Chemistry published new progress about 56-05-3. 56-05-3 belongs to pyrimidines, auxiliary class Pyrimidine,Chloride,Amine,API, name is 2-Amino-4,6-dichloropyrimidine, and the molecular formula is C4H3Cl2N3, Category: pyrimidines.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia

Mussetta, Marie T.’s team published research in Comptes Rendus des Seances de l’Academie des Sciences, Serie C: Sciences Chimiques in 277 | CAS: 31401-45-3

Comptes Rendus des Seances de l’Academie des Sciences, Serie C: Sciences Chimiques published new progress about 31401-45-3. 31401-45-3 belongs to pyrimidines, auxiliary class Pyrimidine,Amine, name is N,N-Dimethylpyrimidin-4-amine, and the molecular formula is C6H9N3, Safety of N,N-Dimethylpyrimidin-4-amine.

Mussetta, Marie T. published the artcileConfigurations of 4-amino- and of 4-acetylaminopyrimidines and their derivatives, Safety of N,N-Dimethylpyrimidin-4-amine, the publication is Comptes Rendus des Seances de l’Academie des Sciences, Serie C: Sciences Chimiques (1973), 277(24), 1279-82, database is CAplus.

Dipole moments for pyrimidine, 4-aminopyrimidine (I), and 9 N-substituted I were measured in benzene or dioxane and were interpreted in relation to preferential conformations and interactions between the amino and adjacent ring N atoms.

Comptes Rendus des Seances de l’Academie des Sciences, Serie C: Sciences Chimiques published new progress about 31401-45-3. 31401-45-3 belongs to pyrimidines, auxiliary class Pyrimidine,Amine, name is N,N-Dimethylpyrimidin-4-amine, and the molecular formula is C6H9N3, Safety of N,N-Dimethylpyrimidin-4-amine.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia

Lardenois, Patrick’s team published research in Bulletin de la Societe Chimique de France in | CAS: 31401-45-3

Bulletin de la Societe Chimique de France published new progress about 31401-45-3. 31401-45-3 belongs to pyrimidines, auxiliary class Pyrimidine,Amine, name is N,N-Dimethylpyrimidin-4-amine, and the molecular formula is C6H9N3, Synthetic Route of 31401-45-3.

Lardenois, Patrick published the artcileTautomerism in heterocyclic compounds. X. Structure of pyrimidine derivatives, Synthetic Route of 31401-45-3, the publication is Bulletin de la Societe Chimique de France (1971), 1858-68, database is CAplus.

The uv, ir, and NMR spectra were used to study tautomerism in 54 hydroxy, thio, amino, and acylamino pyrimidine derivatives, having no Me or Ph group in the 2-position and a functional group in the 4 position. The pyrimidine derivatives were prepared by known methods.

Bulletin de la Societe Chimique de France published new progress about 31401-45-3. 31401-45-3 belongs to pyrimidines, auxiliary class Pyrimidine,Amine, name is N,N-Dimethylpyrimidin-4-amine, and the molecular formula is C6H9N3, Synthetic Route of 31401-45-3.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia

Roloff, Alexander’s team published research in ChemBioChem in 14 | CAS: 169396-92-3

ChemBioChem published new progress about 169396-92-3. 169396-92-3 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Amide,Others,PNA, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C26H26N4O7, Name: 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid.

Roloff, Alexander published the artcileReducing Product Inhibition in Nucleic Acid-Templated Ligation Reactions: DNA-Templated Cycligation, Name: 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, the publication is ChemBioChem (2013), 14(17), 2322-2328, database is CAplus and MEDLINE.

Programmable interactions allow nucleic acid mols. to template chem. reactions by increasing the effective molarities of appended reactive groups. DNA/RNA-triggered reactions can proceed, in principle, with turnover in the template. The amplification provided by the formation of many product mols. per template is a valuable asset when the availability of the DNA or RNA target is limited. However, turnover is usually impeded by reaction products that block access to the template. Product inhibition is most severe in ligation reactions, where products after ligation have dramatically increased template affinities. We introduce a potentially generic approach to reduce product inhibition in nucleic acid-programmed ligation reactions. A DNA-triggered ligation-cyclization sequence (“cycligation”) of bifunctional peptide nucleic acid (PNA) conjugates affords cyclic ligation products. Melting experiments revealed that product cyclization is accompanied by a pronounced decrease in template affinity compared to linear ligation products. The reaction system relies upon haloacetylated PNA-thioesters and isocysteinyl-PNA-cysteine conjugates, which were ligated on a DNA template according to a native chem. ligation mechanism. Dissociation of the resulting linear product-template duplex (induced by, for example, thermal cycling) enabled product cyclization through sulfur-halide substitution. Both ligation and cyclization are fast reactions (ligation: 86 % yield after 20 min, cyclization: quant. after 5 min). Under thermocycling conditions, the DNA template was able to trigger the formation of new product mols. when fresh reactants were added. Furthermore, cycligation produced 2-3 times more product than a conventional ligation reaction with substoichiometric template loads (0.25-0.01 equiv). We believe that cyclization of products from DNA-templated reactions could ultimately afford systems that completely overcome product inhibition.

ChemBioChem published new progress about 169396-92-3. 169396-92-3 belongs to pyrimidines, auxiliary class Pyrimidine,Carboxylic acid,Amine,Amide,Others,PNA, name is 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid, and the molecular formula is C26H26N4O7, Name: 2-(N-(2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)ethyl)-2-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)acetic acid.

Referemce:
https://pubchem.ncbi.nlm.nih.gov/compound/Pyrimidine,
Pyrimidine – Wikipedia