Raoufmoghaddam, Saeed et al. published their research in Chemistry – A European Journal in 2015 | CAS: 16879-39-3

2-Bromo-4,6-dimethylpyrimidine (cas: 16879-39-3) belongs to pyrimidine derivatives. The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives. A Cu-catalyzed and 4-HO-TEMPO-mediated [3 + 3] annulation of commercially available amidines with saturated ketones enables an efficient and facile synthesis of structurally important pyrimidines via a cascade reaction of oxidative dehydrogenation/annulation/oxidative aromatization.Application of 16879-39-3

Palladium(0)/NHC-Catalyzed Reductive Heck Reaction of Enones: A Detailed Mechanistic Study was written by Raoufmoghaddam, Saeed;Mannathan, Subramaniyan;Minnaard, Adriaan J.;de Vries, Johannes G.;Reek, Joost N. H.. And the article was included in Chemistry – A European Journal in 2015.Application of 16879-39-3 This article mentions the following:

We have studied the mechanism of the palladium-catalyzed reductive Heck reaction of para-substituted enones with 4-iodoanisole by using N,N-diisopropylethylamine (DIPEA) as the reductant. Kinetic studies and in situ spectroscopic anal. have provided a detailed insight into the reaction. Progress kinetic anal. demonstrated that neither catalyst decomposition nor product inhibition occurred during the catalysis. The reaction is first order in the palladium and aryl iodide, and zero order in the activated alkene, N-heterocyclic carbene (NHC) ligand, and DIPEA. The experiments with deuterated solvent ([D7]DMF) and deuterated base ([D15]Et3N) supported the role of the amine as a reductant in the reaction. The palladium complex [Pd0(NHC)(1)] has been identified as the resting state. The kinetic experiments by stopped-flow UV/Vis also revealed that the presence of the second substrate, benzylideneacetone 1, slows down the oxidative addition of 4-iodoanisole through its competing coordination to the palladium center. The kinetic and mechanistic studies indicated that the oxidative addition of the aryl iodide is the rate-determining step. Various scenarios for the oxidative addition step have been analyzed by using DFT calculations (bp86/def2-TZVP) that supported the inhibiting effect of substrate 1 by formation of resting state [Pd0(NHC)(1)] species at the cost of further increase in the energy barrier of the oxidative addition step. In the experiment, the researchers used many compounds, for example, 2-Bromo-4,6-dimethylpyrimidine (cas: 16879-39-3Application of 16879-39-3).

2-Bromo-4,6-dimethylpyrimidine (cas: 16879-39-3) belongs to pyrimidine derivatives. The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives. A Cu-catalyzed and 4-HO-TEMPO-mediated [3 + 3] annulation of commercially available amidines with saturated ketones enables an efficient and facile synthesis of structurally important pyrimidines via a cascade reaction of oxidative dehydrogenation/annulation/oxidative aromatization.Application of 16879-39-3

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Zeng, Yuyang et al. published their research in Journal of Dairy Science in 2021 | CAS: 1220-83-3

4-Amino-N-(6-methoxypyrimidin-4-yl)benzenesulfonamide (cas: 1220-83-3) belongs to pyrimidine derivatives. The aromatic compound pyrimidine, and its derivatives, are ubiquitous in nature. They are found in nucleic acids, vitamins, amino acids, antibiotics, alkaloids, and a variety of toxins. As nucleotides in DNA and RNA, pyrimidine nucleotide derivatives have a wide range of biological applications. For example, pyrimidine derivatives are useful in DNA repair studies involving cancer and epigenetics.HPLC of Formula: 1220-83-3

A simple and rapid immunochromatography test based on readily available filter paper modified with chitosan to screen for 13 sulfonamides in milk was written by Zeng, Yuyang;Liang, Demei;Zheng, Pimiao;Zhang, Yanfang;Wang, Zile;Mari, Ghulam Mujtaba;Jiang, Haiyang. And the article was included in Journal of Dairy Science in 2021.HPLC of Formula: 1220-83-3 This article mentions the following:

In this study, we developed a novel, simple, rapid, and low-cost colloidal gold-based immunochromatog. method, with filter paper replacing nitrocellulose membrane as the substrate. To obtain adequately immobilized protein, chitosan was used to functionalize the filter paper. After conditions and parameters were optimized, the novel immunochromatog. method was applied for detection of sulfonamide residues in milk. Quant. detection was accomplished using a smartphone and Photoshop software (Adobe Inc., San Jose, CA), allowing us to screen 13 sulfonamides with a limit of detection ranging from 0.42 to 8.64婵炴挾鎸?L and recovery ranging from 88.2 to 116.9% in milk. The proposed novel method performed similarly to the conventional method that uses a nitrocellulose membrane as the transport medium, and it had lower cost and better usability because of the inexpensive and easily available filter paper. In the experiment, the researchers used many compounds, for example, 4-Amino-N-(6-methoxypyrimidin-4-yl)benzenesulfonamide (cas: 1220-83-3HPLC of Formula: 1220-83-3).

4-Amino-N-(6-methoxypyrimidin-4-yl)benzenesulfonamide (cas: 1220-83-3) belongs to pyrimidine derivatives. The aromatic compound pyrimidine, and its derivatives, are ubiquitous in nature. They are found in nucleic acids, vitamins, amino acids, antibiotics, alkaloids, and a variety of toxins. As nucleotides in DNA and RNA, pyrimidine nucleotide derivatives have a wide range of biological applications. For example, pyrimidine derivatives are useful in DNA repair studies involving cancer and epigenetics.HPLC of Formula: 1220-83-3

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia