Yamada, Ken et al. published their research in ACS Chemical Biology in 2015 | CAS: 69256-17-3

1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (cas: 69256-17-3) belongs to pyrimidine derivatives. Heterocyclic compounds bearing the pyrimidine core are of tremendous interest as they constitute an important class of natural and synthetic compounds exhibiting diverse useful biological activities that hold attractive potential for clinical translation as therapeutic agents in alleviation of a myriad of diseases. Drugs having the pyrimidine motif have manifested to exhibit gratifying biological activity like anticancer, antiviral, anti-inflammatory, antibacterial, and antihypertensive activities.Formula: C10H13FN2O5

Nucleotide sugar pucker preference mitigates excision by HIV-1 RT was written by Yamada, Ken; Wahba, Alexander S.; Bernatchez, Jean A.; Ilina, Tatiana; Martinez-Montero, Saul; Habibian, Maryam; Deleavey, Glen F.; Gotte, Matthias; Parniak, Michael A.; Damha, Masad J.. And the article was included in ACS Chemical Biology on September 18,2015.Formula: C10H13FN2O5 The following contents are mentioned in the article:

A series of DNA primers containing nucleotides with various sugar pucker conformations at the 3′-terminus were chem. synthesized by solid-phase synthesis. The ability of wild-type (WT) HIV-1 reverse transcriptase (RT) and AZT-resistant (AZTr) RT to excise the 3′-terminal nucleotide was assessed. Nucleosides with a preference for the North conformation were more refractory to excision by both WT-RT and AZTr-RT. We found that DNA primers that contain North puckered-nucleotides at the 3′-terminus can also affect the translocation status of the RT/template/primer complex, which provides an underlying mechanism to avoid being excised. Together, these results point to a correlation between the sugar conformation of the 3′-terminal nucleotide, the precise position of HIV-1 RT on its nucleic acid substrate, and, in turn, its catalytic function. Nucleotide sugar conformation is therefore an important parameter in defining the susceptibility to RT-catalyzed phosphorolytic excision. This study involved multiple reactions and reactants, such as 1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (cas: 69256-17-3Formula: C10H13FN2O5).

1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione (cas: 69256-17-3) belongs to pyrimidine derivatives. Heterocyclic compounds bearing the pyrimidine core are of tremendous interest as they constitute an important class of natural and synthetic compounds exhibiting diverse useful biological activities that hold attractive potential for clinical translation as therapeutic agents in alleviation of a myriad of diseases. Drugs having the pyrimidine motif have manifested to exhibit gratifying biological activity like anticancer, antiviral, anti-inflammatory, antibacterial, and antihypertensive activities.Formula: C10H13FN2O5

69256-17-3;1-((2R,3S,4R,5R)-3-Fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione;The future of 69256-17-3;New trend of C10H13FN2O5;function of 69256-17-3