Adding a certain compound to certain chemical reactions, such as: 941685-26-3, 4-Chloro-7-((2-(trimethylsilyl)ethoxy)methyl)-7H-pyrrolo[2,3-d]pyrimidine, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound, 941685-26-3, blongs to pyrimidines compound. Recommanded Product: 941685-26-3
A solution of 4-chloro-7-((2-(trimethylsilyl)ethoxy)methyl)-7H-pyrrolo[2,3- fif]pyrimidine (15.0 g, 52.9 mmol) in N,N-dimethylformamide (200 mL) was added to Pd(dppf)Cl2 (2.2 g, 2.7 mmol), (3-nitrophenyl)boronic acid (13.3 g, 79.7 mmol) under nitrogen. A solution of sodium carbonate (6.00 g, 56.6 mmol) in water (60.0 mL) was then added and the reaction was stirred for 3 hours at 100 C. The resulting mixture was concentrated in vacuo, and the solids were filtered and extracted with dichloromethane (*3). The combined organic layers were washed with H20, brine, dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. The reaction was then purified by chromatography using silica gel, eluting with 0-33% EtOAc/petroleum ether. The product was collected and concentrated in vacuo to afford 4-(3-nitrophenyl)-7-((2-(trimethylsilyl)ethoxy)methyl)-7H-pyrrolo[2,3-£ lpyrirnidine as a yellow solid. LRMS (ESI) calc’d for [M+H]+: 371, found 371.
These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,941685-26-3, its application will become more common.
Reference:
Patent; MERCK SHARP & DOHME CORP.; AHEARN, Sean, P.; CHRISTOPHER, Matthew; JUNG, Joon; PU, Qinglin; RIVKIN, Alexey; SCOTT, Mark, E.; WITTER, David, J.; WOO, Hyun Chong; CASH, Brandon; DINSMORE, Christopher; GUERIN, David; WO2013/85802; (2013); A1;,
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia