A new application about 120099-61-8

There is still a lot of research devoted to this compound(SMILES:CO[C@@H]1CNCC1)Product Details of 120099-61-8, and with the development of science, more effects of this compound(120099-61-8) can be discovered.

Product Details of 120099-61-8. The fused heterocycle is formed by combining a benzene ring with a single heterocycle, or two or more single heterocycles. Compound: (S)-3-Methoxypyrrolidine, is researched, Molecular C5H11NO, CAS is 120099-61-8, about Ultrapotent vinblastines in which added molecular complexity further disrupts the target tubulin dimer-dimer interface. Author is Carney, Daniel W.; Lukesh, John C. III; Brody, Daniel M.; Brutsch, Manuela M.; Boger, Dale L..

Approaches to improving the biol. properties of natural products typically strive to modify their structures to identify the essential pharmacophore, or make functional group changes to improve biol. target affinity or functional activity, change phys. properties, enhance stability, or introduce conformational constraints. Aside from accessible semisynthetic modifications of existing functional groups, rarely does one consider using chem. synthesis to add mol. complexity to the natural product. In part, this may be attributed to the added challenge intrinsic in the synthesis of an even more complex compound Herein, we report synthetically derived, structurally more complex vinblastines inaccessible from the natural product itself that are a stunning 100-fold more active (IC50 values, 50-75 pM vs. 7 nM; HCT116), and that are now accessible because of advances in the total synthesis of the natural product. The newly discovered ultrapotent vinblastines, which may look highly unusual upon first inspection, bind tubulin with much higher affinity and likely further disrupt the tubulin head-to-tail α/β dimer-dimer interaction by virtue of the strategic placement of an added conformationally well-defined, rigid, and extended C20′ urea along the adjacent continuing protein-protein interface. In this case, the added mol. complexity was used to markedly enhance target binding and functional biol. activity (100-fold), and likely represents a general approach to improving the properties of other natural products targeting a protein-protein interaction.

There is still a lot of research devoted to this compound(SMILES:CO[C@@H]1CNCC1)Product Details of 120099-61-8, and with the development of science, more effects of this compound(120099-61-8) can be discovered.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia