A new synthetic route of 703-95-7

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,703-95-7, its application will become more common.

703-95-7, Adding a certain compound to certain chemical reactions, such as: 703-95-7, 5-Fluoro-2,6-dioxo-1,2,3,6-tetrahydropyrimidine-4-carboxylic acid, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound, 703-95-7, blongs to pyrimidines compound.

General procedure: To an ice-cooled solution of amine (1.0 mmol) in DMF were added Boc-AA-OH or carboxylic acid (1.0 mmol), followed by EDC*HCl (1.2 mmol), HOBt*H2O (1.2 mmol) and Et3N (1.2 mmol) were then added. The reaction mixture was stirred for 12 h at room temperature. After removal of the solvent in vacuo, the residue was dissolved in EtOAc (20 mL), extracted with 10% citric acid (aq) (3 ¡Á 5 mL), saturated solution of NaHCO3 (aq) (3 ¡Á 5 mL), and finally washed with brine (1 ¡Á 5 mL), then dried over Na2SO4, and finally evaporated to give the crude product which was further purified by using column chromatography and then subjected to tert-butyloxycarbamate deprotection by using general procedure A. The obtained product was then subjected to the next step or purified by using preparative HPLC in the case of target compounds. Purified target compounds were immediately lyophilized to afford their respective amorphous powders.

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,703-95-7, its application will become more common.

Reference:
Article; Tagad, Harichandra D.; Hamada, Yoshio; Nguyen, Jeffrey-Tri; Hidaka, Koushi; Hamada, Takashi; Sohma, Youhei; Kimura, Tooru; Kiso, Yoshiaki; Bioorganic and Medicinal Chemistry; vol. 19; 17; (2011); p. 5238 – 5246;,
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia