Adding a certain compound to certain chemical reactions, such as: 16019-33-3, 2-(4,6-Dichloropyrimidin-5-yl)acetaldehyde, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound, Product Details of 16019-33-3, blongs to pyrimidines compound. Product Details of 16019-33-3
1 g of 2-(4,6-dichloropyrimidin-5-yl)acetaldehyde was dissolved in 20 mL of THF, and the reactor was cooled to -78 C. 4.36 mL of a methylmagnesium bromide diethyl ether solution (3 mol/L) was slowly added dropwise dropwisely thereto. At the same temperature, the mixture was stirred for 1 hour, and a saturated aqueous ammonium chloride solution was slowly added thereto to terminate the reaction. The reaction mixture was stirred at room temperature for 10 minutes and placed in a separatory funnel, followed by extraction with ethyl acetate. The organic layer was washed with a saturated aqueous sodium chloride solution, and then dried over sodium sulfate to remove the solvent. The residue was purified by basic silica gel chromatography (hexane/ethyl acetate=1/0->3/1), thereby obtaining 446 mg of the title compound. (1322) Physical Properties: m/z [M+H]+ 207.0.
At the same time, in my other blogs, there are other synthetic methods of this type of compound,16019-33-3, 2-(4,6-Dichloropyrimidin-5-yl)acetaldehyde, and friends who are interested can also refer to it.
Reference:
Patent; TAIHO PHARMACEUTICAL CO., LTD.; MIYAZAKI, Isao; SHIMAMURA, Tadashi; KATO, Masanori; FUJITA, Hidenori; IGUCHI, Satoru; (161 pag.)US2018/9818; (2018); A1;,
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia