Analyzing the synthesis route of 2-Chloro-5-hydroxypyrimidine

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,4983-28-2, its application will become more common.

Application of 4983-28-2 ,Some common heterocyclic compound, 4983-28-2, molecular formula is C4H3ClN2O, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

Step 1 : 2-Chloropyrimidin-5-ol (5.3 g) was dissolved under argon in acetone (144 ml). After addition of potassium carbonate (8.42 g) and 2,2,3,3-tetrafluoropropyl trifluoromethanesulfonate (12.3 g) the mixture was stirred for 18 h. The mixture was diluted with -200 ml ether, stirred for 10 min and filtered. The filtrate was concentrated, taken up in dichloromethane, filtered again and concentrated to dryness to give 2-chloro-5-(2,2,3,3- tetrafluoropropoxy)pyrimidine (8.99g, not totally pure) as orange oil. MS: m/z = 245.0 [M+H]+.

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,4983-28-2, its application will become more common.

Reference:
Patent; F. HOFFMANN-LA ROCHE AG; HOFFMANN-LA ROCHE INC.; BARTELS, Bjoern; DOLENTE, Cosimo; GUBA, Wolfgang; HAAP, Wolfgang; OBST SANDER, Ulrike; PETERS, Jens-Uwe; WOLTERING, Thomas; (99 pag.)WO2016/150785; (2016); A1;,
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia