Adding a certain compound to certain chemical reactions, such as: 5466-43-3, 2,4-Dichloro-6,7-dihydro-5H-cyclopenta[d]pyrimidine, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound, Computed Properties of C7H6Cl2N2, blongs to pyrimidines compound. Computed Properties of C7H6Cl2N2
General procedure: To a solution of 2,4-dichloro-5-fluoroquinazoline (22a) (100.00mg, 460.77 mumol, 1.00 eq) in THF (3.00mL) was added methyl (2S,3S)-3-aminobicyclo[2.2.2]octane-2-carboxylate (84.44mg, 460.77 mumol, 1.00 eq) and DIPEA (238.20mg, 1.84mmol, 4.00 eq) at room temperature overnight. H2O (20mL) was added to the mixture and extracted with EtOAc (10mL¡Á3). The combined organic layers were dried over Na2SO4 and concentrated in vacuum. The residue was purified by column chromatography on silica gel with PE:EtOAc (10:1 to 5:1) to give compound 23a (130.00mg, 357.33 mumol, 77.55% yield) as a yellow solid.
At the same time, in my other blogs, there are other synthetic methods of this type of compound,5466-43-3, 2,4-Dichloro-6,7-dihydro-5H-cyclopenta[d]pyrimidine, and friends who are interested can also refer to it.
Reference:
Article; Xiong, Jian; Wang, Jingjing; Hu, Guoping; Zhao, Weili; Li, Jianqi; European Journal of Medicinal Chemistry; vol. 162; (2019); p. 249 – 265;,
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia