Analyzing the synthesis route of 591-12-8

As far as I know, this compound(591-12-8)Computed Properties of C5H6O2 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

The chemical properties of alicyclic heterocycles are similar to those of the corresponding chain compounds. Compound: 5-Methylfuran-2(3H)-one, is researched, Molecular C5H6O2, CAS is 591-12-8, about Trimetallic Cu-Ni-Zn/H-ZSM-5 Catalyst for the One-Pot Conversion of Levulinic Acid to High-Yield 1,4-Pentanediol under Mild Conditions in an Aqueous Medium, the main research direction is trimetallic copper nickel zinc hydrogen ZSM5 catalyst levulinate pentanediol.Computed Properties of C5H6O2.

The one-pot direct conversion of levulinic acid (LA) to 1,4-pentanediol (1,4-PDO) was investigated over a trimetallic Zn-promoted Cu-Ni alloy on a H-ZSM-5 (Cu-Ni-Zn/H-ZSM-5) catalyst. Under mild reaction conditions at 130°C and a H2 pressure of 2.5 MPa for 6 h in an aqueous medium, almost complete conversion of LA to high-yield 1,4-PDO (93.4%) was achieved. The presence of the Zn promoter effectively suppressed the growth of the Cu-Ni alloy nanoparticles (NPs) on the surface of H-ZSM-5. Consequently, the reducibility of the Cu-Ni-Zn alloy was much higher than that of the Cu-Ni alloy. The numerous Lewis acid sites of the Cu-Ni-Zn/H-ZSM-5 catalyst enhanced the adsorption of LA, and the adsorbed LA was converted to γ-valerolactone (GVL) at the Bronsted acid sites of H-ZSM-5 followed by hydrogenation at the Cu-Ni alloy sites. Subsequently, the readsorption of GVL was activated at the Lewis acid sites and GVL underwent ring opening, followed by hydrogenation to form 1,4-PDO at the Cu-Ni alloy sites. The H2 spillover on the Zn-promoted Cu-Ni alloy NPs enhanced the hydrogenation of LA to 1,4-PDO. Because of the mild reaction conditions, the formation of coke and active site sintering was highly suppressed. In addition, metal leaching did not occur over the trimetallic Cu-Ni-Zn/H-ZSM-5 catalyst. Consequently, the Cu-Ni-Zn/H-ZSM-5 catalyst could be used for up to five cycles with minimal activity loss.

As far as I know, this compound(591-12-8)Computed Properties of C5H6O2 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia