The reaction rate of a catalyzed reaction is faster than the reaction rate of the uncatalyzed reaction at the same temperature. COA of Formula: C18H26FN3O4S, 764659-72-5, Name is (2R,5S)-(1R,2S,5R)-2-Isopropyl-5-methylcyclohexyl 5-(4-amino-5-fluoro-2-oxopyrimidin-1(2H)-yl)-1,3-oxathiolane-2-carboxylate, SMILES is O=C([C@@H]1O[C@H](N2C=C(F)C(N)=NC2=O)CS1)O[C@H]3[C@H](C(C)C)CC[C@@H](C)C3, in an article , author is Gogula, Thirupathi, once mentioned of 764659-72-5.
Temperature-modulated selective C(sp(3))-H or C(sp(2))-H arylation through palladium catalysis
Transition metal-catalysed C-H bond functionalisations have been extensively developed in organic and medicinal chemistry. Among these catalytic approaches, the selective activation of C(sp(3))-H and C(sp(2))-H bonds is particularly appealing for its remarkable synthetic versatility, yet it remains highly challenging. Herein, we demonstrate the first example of temperature-dependent selective C-H functionalisation of unactivated C(sp(3))-H or C(sp(2))-H bonds at remote positions through palladium catalysis using 7-pyridyl-pyrazolo[1,5-a]pyrimidine as a new directing group. At 120 degrees C, C(sp(3))-H arylation was triggered by the chelation of a rare [6,5]-fused palladacycle, whereas at 140 degrees C, C(sp(2))-H arylation proceeded instead through the formation of a 16-membered tetramer containing four 7-pyridyl-pyrazolo[1,5-a]pyrimidine-palladium chelation units. The subsequent mechanistic study revealed that both C-H activations shared a common 6-membered palladacycle intermediate, which was then directly transformed to either the [6,5]-fused palladacycle for C(sp(3))-H activation at 120 degrees C or the tetramer for C(sp(2))-H arylation at 140 degrees C with catalytic amounts of Pd(OAc)(2) and AcOH. Raising the temperature from 120 degrees C to 140 degrees C can also convert the [6,5]-fused palladacycle to the tetramer with the above-mentioned catalysts, hence completing the C(sp(2))-H arylation ultimately.
But sometimes, even after several years of basic chemistry education, it is not easy to form a clear picture on how they govern reactivity! 764659-72-5, you can contact me at any time and look forward to more communication. COA of Formula: C18H26FN3O4S.
Reference:
Pyrimidine | C4H4N2 – PubChem,
,Pyrimidine – Wikipedia