Behera, Prafulla Kumar team published research on Journal of Molecular Structure in 2021 | 1722-12-9

Electric Literature of 1722-12-9, 2-Chloropyrimidine is a monochlorinated pyrimidine with plant growth regulating activity. Chloropyrimidine is a useful reagent in the preparation of antivirals and other biologically active compounds.
2-Chloropyrimidine undergoes cobalt-catalyzed cross-coupling reaction with aryl halides.
2-Chloropyrimidine is a molecule that can be synthesized by the oxidation of pyrimidine with hydrogen peroxide and hydrochloric acid. The reaction proceeds through an electrochemical process in which the oxidation catalyst is a platinum electrode. This reaction is catalyzed by the nucleophilic attack of malonic acid on the chloropyrimidine at the methylene group. This efficient method for making 2-chloropyrimidine has been applied to synthesize aryl halides, including phenyl chloropyrimidine and pyridyl chloropyrimidine, from their corresponding chloride and bromide precursors. The fluorescence properties of 2-chloropyrimidine have been studied in coordination chemistry, where it forms complexes with metal ions such as Mn2+. In this study, it was found that adsorption mechanisms are dependent on molecular size, charge density, kinetic energy, and adsorbent surface area., 1722-12-9.

Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. 1722-12-9, formula is C4H3ClN2, Name is 2-Chloropyrimidine. In nucleic acids, three types of nucleobases are pyrimidine derivatives: cytosine (C), thymine (T), and uracil (U). Electric Literature of 1722-12-9.

Behera, Prafulla Kumar;Maity, Lakshmikanta;Kisan, Hemanta K.;Dutta, Basudeb;Isab, Anvarhusein A.;Chandra, Swapan K.;Dinda, Joydev research published 《 Gold(I) and gold(III) complexes supported by a pyrazine / pyrimidine wingtip N-heterocyclic carbene: Synthesis, structure and DFT studies》, the research content is summarized as follows. Starting from pyrazine and pyrimidine functionalized N-heterocyclic carbene (NHC) proligand 1-(2-Pyrazinyl)-3(methyl) imidazolium chloride (1.HCl), 1-(2-Pyrimidyl)-3(methyl) imidazolium chloride (2.HCl), four novel gold complexes [Au(1)Cl], (1a); [Au(1)Cl3], (1b), [Au(2)Cl], (2a) and [Au(2)Cl3] (2b) were synthesized and characterized using NMR spectroscopic techniques and elemental anal. Addnl., the solid state structures of 1a & 2b were elucidated using single crystal X-ray diffraction anal., which revealed that in 1a, the carbene nucleus and the chloride ion bound to Au(I) nearly linear having C-Au-Cl bond angle 178.84°. Where as in 2b, the carbene nucleus and the chloride ion bound to the Au(III) adopts the square planar geometry surrounding Au(III). A series of DFT calculations were also performed to gain further insight into the resp. structures of the complexes to relate the crystallog. parameters and electronic distribution.

Electric Literature of 1722-12-9, 2-Chloropyrimidine is a monochlorinated pyrimidine with plant growth regulating activity. Chloropyrimidine is a useful reagent in the preparation of antivirals and other biologically active compounds.
2-Chloropyrimidine undergoes cobalt-catalyzed cross-coupling reaction with aryl halides.
2-Chloropyrimidine is a molecule that can be synthesized by the oxidation of pyrimidine with hydrogen peroxide and hydrochloric acid. The reaction proceeds through an electrochemical process in which the oxidation catalyst is a platinum electrode. This reaction is catalyzed by the nucleophilic attack of malonic acid on the chloropyrimidine at the methylene group. This efficient method for making 2-chloropyrimidine has been applied to synthesize aryl halides, including phenyl chloropyrimidine and pyridyl chloropyrimidine, from their corresponding chloride and bromide precursors. The fluorescence properties of 2-chloropyrimidine have been studied in coordination chemistry, where it forms complexes with metal ions such as Mn2+. In this study, it was found that adsorption mechanisms are dependent on molecular size, charge density, kinetic energy, and adsorbent surface area., 1722-12-9.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia