Brief introduction of 2,4-Dichloro-6-methyl-5-nitropyrimidine

The synthetic route of 13162-26-0 has been constantly updated, and we look forward to future research findings.

Adding a certain compound to certain chemical reactions, such as: 13162-26-0, 2,4-Dichloro-6-methyl-5-nitropyrimidine, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound, Safety of 2,4-Dichloro-6-methyl-5-nitropyrimidine, blongs to pyrimidines compound. Safety of 2,4-Dichloro-6-methyl-5-nitropyrimidine

2,4-Dibenzyloxypyrrolo[3,2-d]pyrimidine was prepared by the method used for the preparation of 2,4-dimethoxypyrrolo[3,2-d]pyrimidine as described in Cupps, T. L., Wise, D. S. and Townsend, L. B. J. Org. Chem., 1983, 48, 1060-1064 and references therein. A solution of sodium benzoxide was prepared by adding sodium (4.5 g) to benzyl alcohol (100 ml) and heating under argon with stirring until all the sodium had reacted. This was added slowly to a solution of 2,4-dichloro-6-methyl-5-nitropyrimidine (17 g) in benzyl alcohol (80 ml). When the exothermic reaction was complete, ether (500 ml) was added and the resulting solution was washed with water, dried (MgSO4), and evaporated, excess benzyl alcohol being removed by distillation under high vacuum. Dimethylformamide dimethyl acetal (25 ml) was added to a solution of the crude residue in dry DMF (100 ml). The resulting solution was heated at 100 C. for 3 h, then evaporated to dryness under high vacuum. The solid residue was triturated with hot ethanol, cooled and filtered to yield 2,4-dibenzyloxy-6-(2-dimethylaminoethenyl)-5-nitropyrimidine as an orange solid (24.5 g). A suspension of this product (20 g) in acetic acid (300 ml) was stirred with zinc dust (30 g), the reaction being cooled in an ice-bath during an exothermic reaction, when the reaction temperature rose to 50 C. The reaction mixture was allowed to attain room temperature for 2 h, and was then filtered, evaporated and partitioned between chloroform and aqueous bicarbonate. The organic phase was washed with water, dried (MgSO4) and evaporated to give 2,4-dibenzyloxypyrrolo[3,2-d]pyrimidine as a solid (15.2 g).

The synthetic route of 13162-26-0 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; Industrial Research Limited; Albert Einstein College of Medicine of Yesheva University; US6693193; (2004); B1;,
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia