Brief introduction of 5018-38-2

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,5018-38-2, its application will become more common.

Adding a certain compound to certain chemical reactions, such as: 5018-38-2, 4,6-Dichloro-5-methoxypyrimidine, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound, 5018-38-2, blongs to pyrimidines compound. Formula: C5H4Cl2N2O

1-(5-Methoxy-4-pyrimidinyl)piperazine Piperazine (20 g) was dissolved in water (100 mL) in a Parr bottle and then solid 4,6-dichloro-5-methoxypyrimidine (5.00 g, 27.9 mmole) was added. The mixture was vigorously stirred for 2 h at room temperature during which the 4,6-dichloro-5-methoxypyrimidine dissolved. The stirring bar was removed, catalyst (10% Pd/C, 1.0 g) was added to the turbid solution, and the mixture was then hydrogenated (60 psi, 3 h) at room temperature. The catalyst was filtered off and the filtrate extracted 3 times with CH2Cl2. The CH2Cl2 extracts were dried over Na2SO4 and concentrated in vacuo to give a clear oil which solidified upon standing (3.34 g, 61.7%). This crude product was Kugelrohr distilled (yield 3.24 g), dissolved in acetonitrile, and concentrated HCl was added to precipitate the product as a white powder which was dried in vacuo (4.32 g, 94.0% from crude product, m.p. 2190-221.5 C.).

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,5018-38-2, its application will become more common.

Reference:
Patent; Fabre-Kramer Pharmaceuticals, Inc.; US2009/281114; (2009); A1;,
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia