Application of 1006599-54-7

With the rapid development of chemical substances, we look forward to future research findings about 1006599-54-7.

The major producers of chemicals have been the Europe, Japan and China. Due to the growing call for a cleaner, greener environment, people will have to find innovative ways to maintain their relevance. Here is a compound 1006599-54-7, name is 5-(2-(Methylthio)ethoxy)pyrimidin-2-amine. This compound has unique chemical properties. The synthetic route is as follows. Application In Synthesis of 5-(2-(Methylthio)ethoxy)pyrimidin-2-amine

To a solution of 2-[(cyclopentylmethyl)(ethyl)amino]-5-(trifluoromethyl)benzaldehyde (3.34 g, 11.2 mmol) obtained in Step 3 and 5-[2-(methylthio)ethoxy]pyrimidin-2-amine (2.27 g, 12.3 mmol) obtained in Step 1 in toluene (80 mL) was added acetic acid (317 mg, 5.19 mmol), and the mixture was refluxed by heating for 4 hours with a Dean-Stark apparatus. The reaction mixture was left to cool to room temperature, and then added with sodium triacetoxyborohydride (4.73 g, 22.3 mmol) on an ice bath with stirring, and the mixture was stirred at room temperature for 60 hours. The reaction mixture was added with water, and extracted with chloroform, and then the organic layer was washed with water and saturated brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography (hexane:ethyl acetate=20:1?10:1?4:1) to obtain N-({2-[(cyclopentylmethyl)(ethyl)amino]-5-(trifluoromethyl)phenyl}methyl)-5-[2-(methylthio)ethoxy]pyrimidin-2-amine (4.39 g, 84%) as a pale yellow oil.1H-NMR (CDCl3) delta: 1.03 (3H, t, J=7.1 Hz), 1.15-1.23 (2H, m), 1.43-1.66 (4H, m), 1.67-1.76 (2H, m), 2.00 (1H, m), 2.20 (3H, s), 2.85 (2H, t, J=6.8 Hz), 2.95 (2H, d, J=7.6 Hz), 3.04 (2H, q, J=7.1 Hz), 4.12 (2H, t, J=6.8 Hz), 4.69 (2H, d, J=5.6 Hz), 5.54 (1H, t, J=5.6 Hz), 7.21 (1H, d, J=8.3 Hz), 7.44 (1H, d, J=8.3 Hz), 7.62 (1H, s), 8.07 (2H, s).

With the rapid development of chemical substances, we look forward to future research findings about 1006599-54-7.

Reference:
Patent; KOWA COMPANY, LTD.; US2009/82352; (2009); A1;,
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Some tips on Application of 1006599-54-7

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,1006599-54-7, its application will become more common.

Application of 1006599-54-7, In the chemical reaction process,reaction time,type of solvent,can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product.An updated downstream synthesis route of 1006599-54-7 as follows.

A solution of 2-amino-5-(2-methylthioethoxy)pyrimidine (1.03 g, 5.55 mmol) and 2-[3-(N-cyclopentylmethyl-N-ethyl)amino-6-methoxypyridine]carboaldehyde (1.60 g, 6.10 mmol) in 1,2-dichloroethane (60 mL) was stirred at room temperature for 10 minutes, and then added with sodium triacetoxyborohydride (1.24 g, 5.83 mmol), and the mixture was stirred at room temperature for 12 hours. The reaction mixture was added with water, and extracted with chloroform. The organic layers were combined, washed with water and saturated brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography (hexane:ethyl acetate=5:1) to obtain 2-[N-[3-(N-cyclopentylmethyl-N-ethyl)amino-6-methoxypyridin-2-yl]methyl]amino-5-(2-methylthioethoxy)pyrimidine (1.60 g, 67%) as pale yellow oil.1H-NMR (CDCl3) delta: 0.97 (3H, t, J=7.1 Hz), 1.08-1.25 (2H, m), 1.34-1.70 (6H, m), 1.84 (1H, m), 2.21 (3H, s), 2.81 (2H, d, J=7.5 Hz), 2.85 (2H, t, J=6.7 Hz), 2.91 (2H, q, J=7.1 Hz), 3.94 (3H, s), 4.12 (2H, t, J=6.7 Hz), 4.70 (2H, d, J=4.6 Hz), 6.33 (1H, t, J=4.6 Hz), 6.64 (1H, d, J=8.6 Hz), 7.47 (1H, d, J=8.6 Hz), 8.12 (2H, s).

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,1006599-54-7, its application will become more common.

Reference:
Patent; Kowa Company, Ltd.; US2009/54474; (2009); A1;,
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia