New downstream synthetic route of 1211443-61-6

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about 1211443-61-6, 2-Chloro-7-cyclopentyl-N,N-dimethyl-7H-pyrrolo[2,3-d]pyrimidine-6-carboxamide.

Electric Literature of 1211443-61-6, The major producers of chemicals have been the Europe, Japan and China. Due to the growing call for a cleaner, greener environment, people will have to find innovative ways to maintain their relevance. Here is a compound 1211443-61-6, name is 2-Chloro-7-cyclopentyl-N,N-dimethyl-7H-pyrrolo[2,3-d]pyrimidine-6-carboxamide. This compound has unique chemical properties. The synthetic route is as follows.

General procedure: To a suspension of 2-chloro-7-cyclopentyl-N,N-dimethyl-7H-pyrrolo[2,3-d]pyrimidine-6-carboxamide (5) (586 mg, 2 mmol) in 20 mL 1,4-dioxane were added compound 3a-f, 3i-u(2 mmol), Pd(OAc)2 (11 mg, 0.05 mmol), BINAP (62 mg, 0.1 mmol) and Cs2CO3 (978 mg, 3 mmol) and the flask was purged with Ar. Then the flask was sealed and the mixture was heated for 12 h at 100. The reaction was cooled to rt, the solvent was removed under reduced pressure, and the residue was purified by silica gel column chromatography to obtain 4a-f, 4i-o, 4r-u.

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about 1211443-61-6, 2-Chloro-7-cyclopentyl-N,N-dimethyl-7H-pyrrolo[2,3-d]pyrimidine-6-carboxamide.

Reference:
Article; Li, Yongtao; Guo, Qingxiang; Zhang, Chao; Huang, Zhi; Wang, Tianqi; Wang, Xin; Wang, Xiang; Xu, Guangwei; Liu, Yanhua; Yang, Shengyong; Fan, Yan; Xiang, Rong; Bioorganic and Medicinal Chemistry Letters; vol. 27; 15; (2017); p. 3231 – 3237;,
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Analyzing the synthesis route of 2-Chloro-7-cyclopentyl-N,N-dimethyl-7H-pyrrolo[2,3-d]pyrimidine-6-carboxamide

The chemical industry reduces the impact on the environment during synthesis 1211443-61-6, I believe this compound will play a more active role in future production and life.

Application of 1211443-61-6, With the rapid development and complex challenges of chemical substances, the synthesis of new drugs is usually one of the most effective ways to increase yield.1211443-61-6, name is 2-Chloro-7-cyclopentyl-N,N-dimethyl-7H-pyrrolo[2,3-d]pyrimidine-6-carboxamide, molecular formula is C14H17ClN4O, molecular weight is 292.76, as common compound, the synthetic route is as follows.

A mixture of /erf-butyl 4-(6-aminopyridin-3-yl-2,4,5-d3)piperazine-l-carboxylate (600 mg, 2.1 mmol) and 2-chloro-7Patent; LI, George, Y.; HOU, Duanjie; (43 pag.)WO2018/81211; (2018); A1;,
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

A new synthetic route of 2-Chloro-7-cyclopentyl-N,N-dimethyl-7H-pyrrolo[2,3-d]pyrimidine-6-carboxamide

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, 1211443-61-6, 2-Chloro-7-cyclopentyl-N,N-dimethyl-7H-pyrrolo[2,3-d]pyrimidine-6-carboxamide.

Each compound has different characteristics, and only by selecting the characteristics of the compound suitable for a specific situation can the compound be applied on a large scale. 1211443-61-6, name is 2-Chloro-7-cyclopentyl-N,N-dimethyl-7H-pyrrolo[2,3-d]pyrimidine-6-carboxamide. This compound has unique chemical properties. The synthetic route is as follows. Recommanded Product: 1211443-61-6

50 mL two neck-flask was charged with 2-chloro-7-cyclopentyl-N,N-dimethyl-7H-pyrrolo[2,3-d] pyrimidine-6-carboxamide(835 mg, 2.85 mmol), 2-amino-5-(4-(tertbutoxycarbonyl)piperazin-1-yl) pyridine 1-oxide (840 mg,2.85 mmol), Palladium diacetate(16 mg, 0.071 mmol),BINAP (89 mg, 0.143 mmol), cesium carbonate (1.39 g,4.3 mmol) and 1,4-dioxane (20 mL) and stirred at 100 Cunder inert atmosphere overnihgt. The reaction mixture wasconcentrated and purified by column chromatography toafford the title compound 7 (1.1 g, 68%) as tan solid. 1HNMR (400 MHz, Chloroform-d) delta 9.63 (s, 1H), 8.73 (d, J= 1.3 Hz, 1H), 8.65 (d, J = 9.4 Hz, 1H), 7.95 (d, J = 2.3 Hz,1H), 7.05 (dd, J = 9.5, 2.5 Hz, 1H), 6.46 (d, J = 1.3 Hz,1H), 4.86-4.72 (m, 1H), 3.59 (t, J = 5.0 Hz, 4H), 3.15 (s,6H), 3.06 (t, J = 5.0 Hz, 4H), 2.66-2.43 (m, 2H), 2.15-1.96(m, 4H), 1.85-1.64 (m, 2H), 1.48 (s, 9H). 13C NMR(101 MHz, CDCl3) delta 163.83, 154.53, 153.19, 151.76,151.55, 141.72, 139.75, 132.98, 126.73, 118.85, 113.68,113.18, 100.74, 80.24, 58.01, 49.49, 39.42, 35.20, 30.20,28.41, 24.61.

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, 1211443-61-6, 2-Chloro-7-cyclopentyl-N,N-dimethyl-7H-pyrrolo[2,3-d]pyrimidine-6-carboxamide.

Reference:
Article; Guo, Qingxiang; Li, Yongtao; Zhang, Chao; Huang, Zhi; Wang, Xin; Nie, Yongwei; Li, Yao; Liu, Yanhua; Yang, Shengyong; Xiang, Rong; Fan, Yan; Medicinal Chemistry Research; vol. 27; 6; (2018); p. 1666 – 1678;,
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

New downstream synthetic route of 2-Chloro-7-cyclopentyl-N,N-dimethyl-7H-pyrrolo[2,3-d]pyrimidine-6-carboxamide

According to the analysis of related databases, 1211443-61-6, the application of this compound in the production field has become more and more popular.

Synthetic Route of 1211443-61-6, As we all know, there are many different methods for the synthesis of a compound, and people can choose the synthesis method that suits their own laboratory according to the actual situation. 1211443-61-6, name is 2-Chloro-7-cyclopentyl-N,N-dimethyl-7H-pyrrolo[2,3-d]pyrimidine-6-carboxamide, molecular formula is C14H17ClN4O, The compound is widely used in many fields, so it is necessary to find a new synthetic route. The downstream synthesis method of this compound is introduced below.

General procedure: tert-butyl (3-((4aminophenyl)sulfonamido)propyl)carbamate (4a, 560mg, 1.70mmol),2-chloro-7-cyclopentyl-N,N-dimethyl-7H-pyrrolo[2,3-d]pyrimidine-6-carboxamide (6,497mg, 1.70mmol),Pd(OAc)2 (30mg, 0.1equiv), BINAP (63mg, 0.06equiv), Cs2CO3(1.11g, 3.40mmol) were dissolved in 1,4-dioxane and degassed with argon for 5 min.The resulted mixture was heated to 105 C for 7 h. After monitored by TLC toobserve completion of reaction, the reaction mixture was filtered through Celite aftercooling to 25 C, then the solvents were removed in vacuo. The crude product waspurified by silica gel column chromatography to afford intermediates 7a in 42% yieldaswhite solid.

According to the analysis of related databases, 1211443-61-6, the application of this compound in the production field has become more and more popular.

Reference:
Article; Wang, Xin; Yu, Chenhua; Wang, Cheng; Ma, Yakun; Wang, Tianqi; Li, Yao; Huang, Zhi; Zhou, Manqian; Sun, Peiqing; Zheng, Jianyu; Yang, Shengyong; Fan, Yan; Xiang, Rong; European Journal of Medicinal Chemistry; vol. 181; (2019);,
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Analyzing the synthesis route of 1211443-61-6

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,1211443-61-6, its application will become more common.

Related Products of 1211443-61-6 ,Some common heterocyclic compound, 1211443-61-6, molecular formula is C14H17ClN4O, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

A solution of 3-(3-aminophenyl)-5-mo holino-7H-thieno[3,2-b]pyran-7-one from step 1 (0.050 g, 0.152 mmol), 2-chloro-7-cyclopentyl-N,N-dimethyl-7H-pyrrolo[2,3-d]pyrimidine-6- carboxamide (0.055 g, 0.182 mmol), BINAP (0.017 g, 0.029 mmol), and cesium carbonate (0.151 g, 0.458 mmol) in 1,4-doxane (2.0 mL) was degassed under a flow of argon for 15 min. Pd(OAc)2 (0.010 g, 0.025 mmol) was added to the mixture and degassed for 10 min. Then, the reaction mixture was heated to 95-100 C for 12 h. The reaction mixture was next cooled to the ambient temperature and concentrated under reduced pressure. The crude product was purified by flash column chromatography (silica-gel), eluting with DCM/MeOH (97:3) gradient. The fractions containing the product were concentrated to yield 28% of compound 17 (0.024 g, 0.041 mmol). Physical state: Pale yellow solid. R = 0.30 (mobile phase: 5% MeOH/DCM) on silica gel plate. Proton NMR and mass spectra are consistent with the structure of product. Calculated molecular weight: 584.2 Dalton. MS (ESI) m/z = 585.42 [M + H]+.

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,1211443-61-6, its application will become more common.

Reference:
Patent; SIGNALRX PHARMACEUTICALS, INC.; MORALES, Guilermo, A.; GARLICH, Joseph, R.; DURDEN, Donald, L.; (166 pag.)WO2018/140730; (2018); A1;,
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Brief introduction of 2-Chloro-7-cyclopentyl-N,N-dimethyl-7H-pyrrolo[2,3-d]pyrimidine-6-carboxamide

The synthetic route of 1211443-61-6 has been constantly updated, and we look forward to future research findings.

In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. 1211443-61-6, name is 2-Chloro-7-cyclopentyl-N,N-dimethyl-7H-pyrrolo[2,3-d]pyrimidine-6-carboxamide, the common compound, a new synthetic route is introduced below. Recommanded Product: 1211443-61-6

General procedure: To a suspension of 2-chloro-7-cyclopentyl-N,N-dimethyl-7H-pyrrolo[2,3-d]pyrimidine-6-carboxamide (5) (586 mg, 2 mmol) in 20 mL 1,4-dioxane were added compound 3a-f, 3i-u(2 mmol), Pd(OAc)2 (11 mg, 0.05 mmol), BINAP (62 mg, 0.1 mmol) and Cs2CO3 (978 mg, 3 mmol) and the flask was purged with Ar. Then the flask was sealed and the mixture was heated for 12 h at 100. The reaction was cooled to rt, the solvent was removed under reduced pressure, and the residue was purified by silica gel column chromatography to obtain 4a-f, 4i-o, 4r-u.

The synthetic route of 1211443-61-6 has been constantly updated, and we look forward to future research findings.

Reference:
Article; Li, Yongtao; Guo, Qingxiang; Zhang, Chao; Huang, Zhi; Wang, Tianqi; Wang, Xin; Wang, Xiang; Xu, Guangwei; Liu, Yanhua; Yang, Shengyong; Fan, Yan; Xiang, Rong; Bioorganic and Medicinal Chemistry Letters; vol. 27; 15; (2017); p. 3231 – 3237;,
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Introduction of a new synthetic route about 2-Chloro-7-cyclopentyl-N,N-dimethyl-7H-pyrrolo[2,3-d]pyrimidine-6-carboxamide

With the rapid development of chemical substances, we look forward to future research findings about 1211443-61-6.

As we all know, there are many different methods for the synthesis of a compound, and people can choose the synthesis method that suits their own laboratory according to the actual situation. 1211443-61-6, name is 2-Chloro-7-cyclopentyl-N,N-dimethyl-7H-pyrrolo[2,3-d]pyrimidine-6-carboxamide, molecular formula is C14H17ClN4O, The compound is widely used in many fields, so it is necessary to find a new synthetic route. The downstream synthesis method of this compound is introduced below. Recommanded Product: 1211443-61-6

General procedure: tert-butyl (3-((4aminophenyl)sulfonamido)propyl)carbamate (4a, 560mg, 1.70mmol),2-chloro-7-cyclopentyl-N,N-dimethyl-7H-pyrrolo[2,3-d]pyrimidine-6-carboxamide (6,497mg, 1.70mmol),Pd(OAc)2 (30mg, 0.1equiv), BINAP (63mg, 0.06equiv), Cs2CO3(1.11g, 3.40mmol) were dissolved in 1,4-dioxane and degassed with argon for 5 min.The resulted mixture was heated to 105 C for 7 h. After monitored by TLC toobserve completion of reaction, the reaction mixture was filtered through Celite aftercooling to 25 C, then the solvents were removed in vacuo. The crude product waspurified by silica gel column chromatography to afford intermediates 7a in 42% yieldaswhite solid.

With the rapid development of chemical substances, we look forward to future research findings about 1211443-61-6.

Reference:
Article; Wang, Xin; Yu, Chenhua; Wang, Cheng; Ma, Yakun; Wang, Tianqi; Li, Yao; Huang, Zhi; Zhou, Manqian; Sun, Peiqing; Zheng, Jianyu; Yang, Shengyong; Fan, Yan; Xiang, Rong; European Journal of Medicinal Chemistry; vol. 181; (2019);,
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Extracurricular laboratory: Synthetic route of 1211443-61-6

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, 1211443-61-6, 2-Chloro-7-cyclopentyl-N,N-dimethyl-7H-pyrrolo[2,3-d]pyrimidine-6-carboxamide.

Each compound has different characteristics, and only by selecting the characteristics of the compound suitable for a specific situation can the compound be applied on a large scale. 1211443-61-6, name is 2-Chloro-7-cyclopentyl-N,N-dimethyl-7H-pyrrolo[2,3-d]pyrimidine-6-carboxamide. This compound has unique chemical properties. The synthetic route is as follows. Recommanded Product: 2-Chloro-7-cyclopentyl-N,N-dimethyl-7H-pyrrolo[2,3-d]pyrimidine-6-carboxamide

General procedure: To a suspension of 2-chloro-7-cyclopentyl-N,N-dimethyl-7H-pyrrolo[2,3-d]pyrimidine-6-carboxamide (5) (586 mg, 2 mmol) in 20 mL 1,4-dioxane were added compound 3a-f, 3i-u(2 mmol), Pd(OAc)2 (11 mg, 0.05 mmol), BINAP (62 mg, 0.1 mmol) and Cs2CO3 (978 mg, 3 mmol) and the flask was purged with Ar. Then the flask was sealed and the mixture was heated for 12 h at 100. The reaction was cooled to rt, the solvent was removed under reduced pressure, and the residue was purified by silica gel column chromatography to obtain 4a-f, 4i-o, 4r-u.

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, 1211443-61-6, 2-Chloro-7-cyclopentyl-N,N-dimethyl-7H-pyrrolo[2,3-d]pyrimidine-6-carboxamide.

Reference:
Article; Li, Yongtao; Guo, Qingxiang; Zhang, Chao; Huang, Zhi; Wang, Tianqi; Wang, Xin; Wang, Xiang; Xu, Guangwei; Liu, Yanhua; Yang, Shengyong; Fan, Yan; Xiang, Rong; Bioorganic and Medicinal Chemistry Letters; vol. 27; 15; (2017); p. 3231 – 3237;,
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

New learning discoveries about 2-Chloro-7-cyclopentyl-N,N-dimethyl-7H-pyrrolo[2,3-d]pyrimidine-6-carboxamide

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,1211443-61-6, its application will become more common.

Synthetic Route of 1211443-61-6 ,Some common heterocyclic compound, 1211443-61-6, molecular formula is C14H17ClN4O, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

General procedure: To a suspension of 2-chloro-7-cyclopentyl-N,N-dimethyl-7H-pyrrolo[2,3-d]pyrimidine-6-carboxamide (5) (586 mg, 2 mmol) in 20 mL 1,4-dioxane were added compound 3a-f, 3i-u(2 mmol), Pd(OAc)2 (11 mg, 0.05 mmol), BINAP (62 mg, 0.1 mmol) and Cs2CO3 (978 mg, 3 mmol) and the flask was purged with Ar. Then the flask was sealed and the mixture was heated for 12 h at 100. The reaction was cooled to rt, the solvent was removed under reduced pressure, and the residue was purified by silica gel column chromatography to obtain 4a-f, 4i-o, 4r-u.

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,1211443-61-6, its application will become more common.

Reference:
Article; Li, Yongtao; Guo, Qingxiang; Zhang, Chao; Huang, Zhi; Wang, Tianqi; Wang, Xin; Wang, Xiang; Xu, Guangwei; Liu, Yanhua; Yang, Shengyong; Fan, Yan; Xiang, Rong; Bioorganic and Medicinal Chemistry Letters; vol. 27; 15; (2017); p. 3231 – 3237;,
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

New downstream synthetic route of 1211443-61-6

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,1211443-61-6, its application will become more common.

Reference of 1211443-61-6, In the chemical reaction process,reaction time,type of solvent,can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product.An updated downstream synthesis route of 1211443-61-6 as follows.

General procedure: To a suspension of 2-chloro-7-cyclopentyl-N,N-dimethyl-7H-pyrrolo[2,3-d]pyrimidine-6-carboxamide (5) (586 mg, 2 mmol) in 20 mL 1,4-dioxane were added compound 3a-f, 3i-u(2 mmol), Pd(OAc)2 (11 mg, 0.05 mmol), BINAP (62 mg, 0.1 mmol) and Cs2CO3 (978 mg, 3 mmol) and the flask was purged with Ar. Then the flask was sealed and the mixture was heated for 12 h at 100. The reaction was cooled to rt, the solvent was removed under reduced pressure, and the residue was purified by silica gel column chromatography to obtain 4a-f, 4i-o, 4r-u.

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,1211443-61-6, its application will become more common.

Reference:
Article; Li, Yongtao; Guo, Qingxiang; Zhang, Chao; Huang, Zhi; Wang, Tianqi; Wang, Xin; Wang, Xiang; Xu, Guangwei; Liu, Yanhua; Yang, Shengyong; Fan, Yan; Xiang, Rong; Bioorganic and Medicinal Chemistry Letters; vol. 27; 15; (2017); p. 3231 – 3237;,
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia