Johansson, Catrine et al. published their research in Nature Chemical Biology in 2016 | CAS: 1373422-53-7

3-((2-(Pyridin-2-yl)-6-(1,2,4,5-tetrahydro-3H-benzo[d]azepin-3-yl)pyrimidin-4-yl)amino)propanoic acid (cas: 1373422-53-7) belongs to pyrimidine derivatives. The pyrimidine derivatives can easily interact with enzymes, genetic materials, and bio components within the cell. For example, the neurotoxin tetrodotoxin is a pyrimidine derivative. It is found in a number of species including the Japanese puffer fish, the blue-ringed octopus, and the orange-bellied newt. Tetrodotoxin prevents the transmission of nerve signals and can result in paralysis and death.Name: 3-((2-(Pyridin-2-yl)-6-(1,2,4,5-tetrahydro-3H-benzo[d]azepin-3-yl)pyrimidin-4-yl)amino)propanoic acid

Structural analysis of human KDM5B guides histone demethylase inhibitor development was written by Johansson, Catrine;Velupillai, Srikannathasan;Tumber, Anthony;Szykowska, Aleksandra;Hookway, Edward S.;Nowak, Radoslaw P.;Strain-Damerell, Claire;Gileadi, Carina;Philpott, Martin;Burgess-Brown, Nicola;Wu, Na;Kopec, Jola;Nuzzi, Andrea;Steuber, Holger;Egner, Ursula;Badock, Volker;Munro, Shonagh;LaThangue, Nicholas B.;Westaway, Sue;Brown, Jack;Athanasou, Nick;Prinjha, Rab;Brennan, Paul E.;Oppermann, Udo. And the article was included in Nature Chemical Biology in 2016.Name: 3-((2-(Pyridin-2-yl)-6-(1,2,4,5-tetrahydro-3H-benzo[d]azepin-3-yl)pyrimidin-4-yl)amino)propanoic acid The following contents are mentioned in the article:

Members of the KDM5 (also known as JARID1) family are 2-oxoglutarate- and Fe2+-dependent oxygenases that act as histone H3K4 demethylases, thereby regulating cell proliferation and stem cell self-renewal and differentiation. Here, the authors report crystal structures of the catalytic core of the human KDM5B enzyme in complex with 3 inhibitor chemotypes. These scaffolds exploitet several aspects of the KDM5 active site, and their selectivity profiles reflected their hybrid features with respect to the KDM4 and KDM6 families. Whereas GSK-J1, a previously identified KDM6 inhibitor, showed 鈭?-fold less inhibitory activity toward KDM5B than toward KDM6 proteins, KDM5-C49 displayed 25-100-fold selectivity between KDM5B and KDM6B. The cell-permeable derivative KDM5-C70 had an antiproliferative effect in myeloma cells, leading to genome-wide elevation of H3K4me3 levels. The selective inhibitor GSK467 exploited unique binding modes, but it lacked cellular potency in the myeloma system. Taken together, these structural leads deliver multiple starting points for further rational and selective inhibitor design. This study involved multiple reactions and reactants, such as 3-((2-(Pyridin-2-yl)-6-(1,2,4,5-tetrahydro-3H-benzo[d]azepin-3-yl)pyrimidin-4-yl)amino)propanoic acid (cas: 1373422-53-7Name: 3-((2-(Pyridin-2-yl)-6-(1,2,4,5-tetrahydro-3H-benzo[d]azepin-3-yl)pyrimidin-4-yl)amino)propanoic acid).

3-((2-(Pyridin-2-yl)-6-(1,2,4,5-tetrahydro-3H-benzo[d]azepin-3-yl)pyrimidin-4-yl)amino)propanoic acid (cas: 1373422-53-7) belongs to pyrimidine derivatives. The pyrimidine derivatives can easily interact with enzymes, genetic materials, and bio components within the cell. For example, the neurotoxin tetrodotoxin is a pyrimidine derivative. It is found in a number of species including the Japanese puffer fish, the blue-ringed octopus, and the orange-bellied newt. Tetrodotoxin prevents the transmission of nerve signals and can result in paralysis and death.Name: 3-((2-(Pyridin-2-yl)-6-(1,2,4,5-tetrahydro-3H-benzo[d]azepin-3-yl)pyrimidin-4-yl)amino)propanoic acid

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Horton, John R. et al. published their research in Journal of Medicinal Chemistry in 2018 | CAS: 1373422-53-7

3-((2-(Pyridin-2-yl)-6-(1,2,4,5-tetrahydro-3H-benzo[d]azepin-3-yl)pyrimidin-4-yl)amino)propanoic acid (cas: 1373422-53-7) belongs to pyrimidine derivatives. The pyrimidine nitrogenous bases are derived from the organic compound pyrimidine through the addition of various functional groups. Drugs having the pyrimidine motif have manifested to exhibit gratifying biological activity like anticancer, antiviral, anti-inflammatory, antibacterial, and antihypertensive activities.Reference of 1373422-53-7

Structure-Based Engineering of Irreversible Inhibitors against Histone Lysine Demethylase KDM5A was written by Horton, John R.;Woodcock, Clayton B.;Chen, Qin;Liu, Xu;Zhang, Xing;Shanks, John;Rai, Ganesha;Mott, Bryan T.;Jansen, Daniel J.;Kales, Stephen C.;Henderson, Mark J.;Cyr, Matthew;Pohida, Katherine;Hu, Xin;Shah, Pranav;Xu, Xin;Jadhav, Ajit;Maloney, David J.;Hall, Matthew D.;Simeonov, Anton;Fu, Haian;Vertino, Paula M.;Cheng, Xiaodong. And the article was included in Journal of Medicinal Chemistry in 2018.Reference of 1373422-53-7 The following contents are mentioned in the article:

The active sites of hundreds of human 伪-ketoglutarate (伪KG) and Fe(II)-dependent dioxygenases are exceedingly well preserved, which challenges the design of selective inhibitors. We identified a noncatalytic cysteine (Cys481 in KDM5A) near the active sites of KDM5 histone H3 lysine 4 demethylases, which is absent in other histone demethylase families, that could be explored for interaction with the cysteine-reactive electrophile acrylamide. We synthesized analogs of a thienopyridine-based inhibitor chemotype, namely, 2-((3-aminophenyl)(2-(piperidin-1-yl)ethoxy)methyl)thieno[3,2-b]pyridine-7-carboxylic acid (N70) and a derivative containing a ((dimethylamino)but-2-enamido)phenyl moiety (N71) designed to form a covalent interaction with Cys481. We characterized the inhibitory and binding activities against KDM5A and determined the cocrystal structures of the catalytic domain of KDM5A in complex with N70 and N71. Whereas the noncovalent inhibitor N70 displayed 伪KG-competitive inhibition that could be reversed after dialysis, inhibition by N71 was dependent on enzyme concentration and persisted even after dialysis, consistent with covalent modification. This study involved multiple reactions and reactants, such as 3-((2-(Pyridin-2-yl)-6-(1,2,4,5-tetrahydro-3H-benzo[d]azepin-3-yl)pyrimidin-4-yl)amino)propanoic acid (cas: 1373422-53-7Reference of 1373422-53-7).

3-((2-(Pyridin-2-yl)-6-(1,2,4,5-tetrahydro-3H-benzo[d]azepin-3-yl)pyrimidin-4-yl)amino)propanoic acid (cas: 1373422-53-7) belongs to pyrimidine derivatives. The pyrimidine nitrogenous bases are derived from the organic compound pyrimidine through the addition of various functional groups. Drugs having the pyrimidine motif have manifested to exhibit gratifying biological activity like anticancer, antiviral, anti-inflammatory, antibacterial, and antihypertensive activities.Reference of 1373422-53-7

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Hu, Jianping et al. published their research in Bioorganic & Medicinal Chemistry Letters in 2016 | CAS: 1373422-53-7

3-((2-(Pyridin-2-yl)-6-(1,2,4,5-tetrahydro-3H-benzo[d]azepin-3-yl)pyrimidin-4-yl)amino)propanoic acid (cas: 1373422-53-7) belongs to pyrimidine derivatives. The pyrimidine nitrogenous bases are derived from the organic compound pyrimidine through the addition of various functional groups. As nucleotides in DNA and RNA, pyrimidine nucleotide derivatives have a wide range of biological applications. For example, pyrimidine derivatives are useful in DNA repair studies involving cancer and epigenetics.Product Details of 1373422-53-7

Design and discovery of new pyrimidine coupled nitrogen aromatic rings as chelating groups of JMJD3 inhibitors was written by Hu, Jianping;Wang, Xin;Chen, Lin;Huang, Min;Tang, Wei;Zuo, Jianping;Liu, Yu-Chih;Shi, Zhe;Liu, Rongfeng;Shen, Jingkang;Xiong, Bing. And the article was included in Bioorganic & Medicinal Chemistry Letters in 2016.Product Details of 1373422-53-7 The following contents are mentioned in the article:

The histone methylation on lysine residues is one of the most studied posttranslational modifications, and its aberrant states have been associated with many human diseases. In 2012, Kruidenier et al. reported GSK-J1 as a selective Jumonji H3K27 demethylase (JMJD3 and UTX) inhibitor. However, there is limited information on the structure-activity relationship of this series of compounds Moreover, there are few scaffolds reported as chelating groups for Fe(II) ion in Jumonji demethylase inhibitors development. To further elaborate the structure-activity relationship of selective JMJD3 inhibitors and to explore the novel chelating groups for Fe(II) ion, the authors initialized a medicinal chem. modification based on the GSK-J1 structure. Finally, the authors found that several compounds bearing different chelating groups showed similar activities with respect to GSK-J1 and excellent metabolic stability in liver microsomes. The Et ester prodrugs of these inhibitors also showed a better activity than GSK-J4 for inhibition of TNF-伪 production in LPS-stimulated murine macrophage cell line Raw 264.7 cells. Taking together, the current study not only discovered alternative potent JMJD3 inhibitors, but also can benefit other researchers to design new series of Jumonji demethylase inhibitors based on the identified chelating groups. This study involved multiple reactions and reactants, such as 3-((2-(Pyridin-2-yl)-6-(1,2,4,5-tetrahydro-3H-benzo[d]azepin-3-yl)pyrimidin-4-yl)amino)propanoic acid (cas: 1373422-53-7Product Details of 1373422-53-7).

3-((2-(Pyridin-2-yl)-6-(1,2,4,5-tetrahydro-3H-benzo[d]azepin-3-yl)pyrimidin-4-yl)amino)propanoic acid (cas: 1373422-53-7) belongs to pyrimidine derivatives. The pyrimidine nitrogenous bases are derived from the organic compound pyrimidine through the addition of various functional groups. As nucleotides in DNA and RNA, pyrimidine nucleotide derivatives have a wide range of biological applications. For example, pyrimidine derivatives are useful in DNA repair studies involving cancer and epigenetics.Product Details of 1373422-53-7

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Dhaliwal, Anandika et al. published their research in Scientific Reports in 2018 | CAS: 1373422-53-7

3-((2-(Pyridin-2-yl)-6-(1,2,4,5-tetrahydro-3H-benzo[d]azepin-3-yl)pyrimidin-4-yl)amino)propanoic acid (cas: 1373422-53-7) belongs to pyrimidine derivatives. Heterocyclic compounds bearing the pyrimidine core are of tremendous interest as they constitute an important class of natural and synthetic compounds exhibiting diverse useful biological activities that hold attractive potential for clinical translation as therapeutic agents in alleviation of a myriad of diseases. For example, the neurotoxin tetrodotoxin is a pyrimidine derivative. It is found in a number of species including the Japanese puffer fish, the blue-ringed octopus, and the orange-bellied newt. Tetrodotoxin prevents the transmission of nerve signals and can result in paralysis and death.Category: pyrimidines

Engineering Lineage Potency and Plasticity of Stem Cells using Epigenetic Molecules was written by Dhaliwal, Anandika;Pelka, Sandra;Gray, David S.;Moghe, Prabhas V.. And the article was included in Scientific Reports in 2018.Category: pyrimidines The following contents are mentioned in the article:

Stem cells are considered as a multipotent regenerative source for diseased and dysfunctional tissues. Despite the promise of stem cells, the inherent capacity of stem cells to convert to tissue-specific lineages can present a major challenge to the use of stem cells for regenerative medicine. We hypothesized that epigenetic regulating mols. can modulate the stem cell’s developmental program, and thus potentially overcome the limited lineage differentiation that human stem cells exhibit based on the source and processing of stem cells. In this study, we screened a library of 84 small mol. pharmacol. agents indicated in nucleosomal modification and identified a sub-set of specific mols. that influenced osteogenesis in human mesenchymal stem cells (hMSCs) while maintaining cell viability in-vitro. Pre-treatment with five candidate hits, Gemcitabine, Decitabine, I-CBP112, Chidamide, and SIRT1/2 inhibitor IV, maximally enhanced osteogenesis in-vitro. In contrast, five distinct mols., 4-Iodo-SAHA, Scriptaid, AGK2, CI-amidine and Delphidine Chloride maximally inhibited osteogenesis. We then tested the role of these mols. on hMSCs derived from aged human donors and report that small epigenetic mols., namely Gemcitabine and Chidamide, can significantly promote osteogenic differentiation by 5.9- and 2.3-fold, resp. This study involved multiple reactions and reactants, such as 3-((2-(Pyridin-2-yl)-6-(1,2,4,5-tetrahydro-3H-benzo[d]azepin-3-yl)pyrimidin-4-yl)amino)propanoic acid (cas: 1373422-53-7Category: pyrimidines).

3-((2-(Pyridin-2-yl)-6-(1,2,4,5-tetrahydro-3H-benzo[d]azepin-3-yl)pyrimidin-4-yl)amino)propanoic acid (cas: 1373422-53-7) belongs to pyrimidine derivatives. Heterocyclic compounds bearing the pyrimidine core are of tremendous interest as they constitute an important class of natural and synthetic compounds exhibiting diverse useful biological activities that hold attractive potential for clinical translation as therapeutic agents in alleviation of a myriad of diseases. For example, the neurotoxin tetrodotoxin is a pyrimidine derivative. It is found in a number of species including the Japanese puffer fish, the blue-ringed octopus, and the orange-bellied newt. Tetrodotoxin prevents the transmission of nerve signals and can result in paralysis and death.Category: pyrimidines

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Long, Fen et al. published their research in Biochemical and Biophysical Research Communications in 2020 | CAS: 1373422-53-7

3-((2-(Pyridin-2-yl)-6-(1,2,4,5-tetrahydro-3H-benzo[d]azepin-3-yl)pyrimidin-4-yl)amino)propanoic acid (cas: 1373422-53-7) belongs to pyrimidine derivatives. Pyrimidines are isomeric with two other forms of diazines: pyridazine, with the nitrogen atoms in the 1 and 2 positions; and pyrazine, with the nitrogen atoms in the 1 and 4 positions. Drugs having the pyrimidine motif have manifested to exhibit gratifying biological activity like anticancer, antiviral, anti-inflammatory, antibacterial, and antihypertensive activities.Computed Properties of C22H23N5O2

Targeting JMJD3 histone demethylase mediates cardiac fibrosis and cardiac function following myocardial infarction was written by Long, Fen;Wang, Qing;Yang, Di;Zhu, Menglin;Wang, Jinghuan;Zhu, YiZhun;Liu, Xinhua. And the article was included in Biochemical and Biophysical Research Communications in 2020.Computed Properties of C22H23N5O2 The following contents are mentioned in the article:

Myocardial fibrosis is the pathol. consequence of injury-induced fibroblastto-myofibroblast transition, resulting in increased stiffness and diminished cardiac function. Histone modification has been shown to play an important role in the pathogenesis of cardiac fibrosis. Here, we identified H3K27me3 demethylase JMJD3/KDM6B promotes cardiac fibrosis via regulation of fibrogenic pathways. Using neonatal rat cardiac fibroblasts (NRCF), we show that the expression of endogenous JMJD3 is induced by angiotensin II (Ang II), while the principle extracellular matrix (ECM) such as fibronectin, CTGF, collagen I and III are increased. We find that JMJD3 inhibition markedly enhances the suppressive mark (H3K27me3) at the beta (β)-catenin promoter in activated cardiac fibroblasts, and then substantially decreases expression of fibrogenic gene. Both inhibition of β-catenin-mediated transcription with ICG-001 and genetic loss of β-catenin can prevent Ang II-induced ECM deposition. Most importantly, in vivo inhibition of JMJD3 rescues myocardial ischemia-induced cardiac fibrosis and cardiac dysfunction. Collectively, our findings are the first to report a novel role of histone demethylase JMJD3 in the pro-fibrotic cardiac fibroblast phenotype, pharmacol. targeting of JMJD3 might represent a promising therapeutic approach for the treatment of human cardiac fibrosis and other fibrotic diseases. This study involved multiple reactions and reactants, such as 3-((2-(Pyridin-2-yl)-6-(1,2,4,5-tetrahydro-3H-benzo[d]azepin-3-yl)pyrimidin-4-yl)amino)propanoic acid (cas: 1373422-53-7Computed Properties of C22H23N5O2).

3-((2-(Pyridin-2-yl)-6-(1,2,4,5-tetrahydro-3H-benzo[d]azepin-3-yl)pyrimidin-4-yl)amino)propanoic acid (cas: 1373422-53-7) belongs to pyrimidine derivatives. Pyrimidines are isomeric with two other forms of diazines: pyridazine, with the nitrogen atoms in the 1 and 2 positions; and pyrazine, with the nitrogen atoms in the 1 and 4 positions. Drugs having the pyrimidine motif have manifested to exhibit gratifying biological activity like anticancer, antiviral, anti-inflammatory, antibacterial, and antihypertensive activities.Computed Properties of C22H23N5O2

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Zhang, Yi et al. published their research in Journal of Chromatography A in 2020 | CAS: 1373422-53-7

3-((2-(Pyridin-2-yl)-6-(1,2,4,5-tetrahydro-3H-benzo[d]azepin-3-yl)pyrimidin-4-yl)amino)propanoic acid (cas: 1373422-53-7) belongs to pyrimidine derivatives. Pyrimidines are isomeric with two other forms of diazines: pyridazine, with the nitrogen atoms in the 1 and 2 positions; and pyrazine, with the nitrogen atoms in the 1 and 4 positions. Therapy for fungal infections is based mainly on four classes of antifungals: azoles, echinocandins, polyenes, and pyrimidine analogs.Quality Control of 3-((2-(Pyridin-2-yl)-6-(1,2,4,5-tetrahydro-3H-benzo[d]azepin-3-yl)pyrimidin-4-yl)amino)propanoic acid

Screening of inhibitors against histone demethylation jumonji domain-containing protein 3 by capillary electrophoresis was written by Zhang, Yi;Lou, Chunli;Xu, Yao;Li, Jing;Qian, Shanshan;Li, Feng;Kang, Jingwu. And the article was included in Journal of Chromatography A in 2020.Quality Control of 3-((2-(Pyridin-2-yl)-6-(1,2,4,5-tetrahydro-3H-benzo[d]azepin-3-yl)pyrimidin-4-yl)amino)propanoic acid The following contents are mentioned in the article:

Jumonji domain-containing proteins (JMJDs) play an important role in the epigenetic regulation of gene expression. Aberrant regulation of histone modification has been observed in the progression of a variety of diseases, such as neurol. disorders and cancer. Therefore, discovery of selective modulators of JMJDs is very attractive in new drug discovery. Herein, a simple capillary electrophoresis (CE) method was developed for screening of inhibitors against JMJD3. A known JMJD3 inhibitor GSK-J1, 5-carboxyfluorescein labeled substrate peptide with an amino acid sequence of KAPRKQLATKAARK(me3)SAPATGG (truncated from histone H3), as well as a small chem. library composed of 37 purified natural compounds and 30 natural extracts were used for method development and validation. The separation of substrate from its demethylated product was achieved by addition of polycation hexadimethrine bromide (HDB) in the running buffer. The enzyme activity was thus assayed accurately through separating the demethylated product from the substrate and then measuring the peak area of the product. The enzyme inhibition can be read out by comparing the peak area of the demethylated product obtained in the present of inhibitors and that of the neg. control in the absence of any inhibitor. The merit of the method is proved by discovering two new JMJD3 inhibitors: salvianic acid A and puerarin 6”-O-xyloside. This study involved multiple reactions and reactants, such as 3-((2-(Pyridin-2-yl)-6-(1,2,4,5-tetrahydro-3H-benzo[d]azepin-3-yl)pyrimidin-4-yl)amino)propanoic acid (cas: 1373422-53-7Quality Control of 3-((2-(Pyridin-2-yl)-6-(1,2,4,5-tetrahydro-3H-benzo[d]azepin-3-yl)pyrimidin-4-yl)amino)propanoic acid).

3-((2-(Pyridin-2-yl)-6-(1,2,4,5-tetrahydro-3H-benzo[d]azepin-3-yl)pyrimidin-4-yl)amino)propanoic acid (cas: 1373422-53-7) belongs to pyrimidine derivatives. Pyrimidines are isomeric with two other forms of diazines: pyridazine, with the nitrogen atoms in the 1 and 2 positions; and pyrazine, with the nitrogen atoms in the 1 and 4 positions. Therapy for fungal infections is based mainly on four classes of antifungals: azoles, echinocandins, polyenes, and pyrimidine analogs.Quality Control of 3-((2-(Pyridin-2-yl)-6-(1,2,4,5-tetrahydro-3H-benzo[d]azepin-3-yl)pyrimidin-4-yl)amino)propanoic acid

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Raeisossadati, Reza et al. published their research in Molecular Neurobiology in 2019 | CAS: 1373422-53-7

3-((2-(Pyridin-2-yl)-6-(1,2,4,5-tetrahydro-3H-benzo[d]azepin-3-yl)pyrimidin-4-yl)amino)propanoic acid (cas: 1373422-53-7) belongs to pyrimidine derivatives. Heterocyclic compounds bearing the pyrimidine core are of tremendous interest as they constitute an important class of natural and synthetic compounds exhibiting diverse useful biological activities that hold attractive potential for clinical translation as therapeutic agents in alleviation of a myriad of diseases. Therapy for fungal infections is based mainly on four classes of antifungals: azoles, echinocandins, polyenes, and pyrimidine analogs.Electric Literature of C22H23N5O2

Small Molecule GSK-J1 Affects Differentiation of Specific Neuronal Subtypes in Developing Rat Retina was written by Raeisossadati, Reza;Movio, Marilia Ines;Walter, Lais Takata;Takada, Silvia Honda;Del Debbio, Carolina Beltrame;Kihara, Alexandre Hiroaki. And the article was included in Molecular Neurobiology in 2019.Electric Literature of C22H23N5O2 The following contents are mentioned in the article:

In this study, we focused on the role of potent histone demethylase inhibitor GSK-J1 as a blocker of Jumonji domain-containing protein 3 (Jmjd3) in early postnatal retinal development. Jmjd3 participates in different processes such as cell proliferation, apoptosis, differentiation, senescence, and cell reprogramming via demethylation of histone 3 lysine 27 trimethylation status (H3K27 me3). We observed that Jmjd3 accumulation is higher in the adult retina, which is consistent with the localization in the differentiated neurons, including ganglion cells in the retina of neonate rats. At this developmental age, we also observed the presence of Jmjd3 in undifferentiated cells. Interestingly, GSK-J1 specifically caused a significant decrease in the number of PKCa-pos. cells, which is a reliable marker of rod-on bipolar cells, showing no significant effects on the differentiation of other retinal subtypes. To our knowledge, these data provide the first evidence that in vivo pharmacol. blocking of histone demethylase by GSK-J1 affects differentiation of specific neuronal subtypes. In summary, our results indisputably revealed that the application of GSK-J1 could influence cell proliferation, maturation, apoptosis induction, and specific cell determination With this, we were able to provide evidence that this small mol. can be explored in therapeutic strategies for the abnormal development and diseases of the central nervous system. This study involved multiple reactions and reactants, such as 3-((2-(Pyridin-2-yl)-6-(1,2,4,5-tetrahydro-3H-benzo[d]azepin-3-yl)pyrimidin-4-yl)amino)propanoic acid (cas: 1373422-53-7Electric Literature of C22H23N5O2).

3-((2-(Pyridin-2-yl)-6-(1,2,4,5-tetrahydro-3H-benzo[d]azepin-3-yl)pyrimidin-4-yl)amino)propanoic acid (cas: 1373422-53-7) belongs to pyrimidine derivatives. Heterocyclic compounds bearing the pyrimidine core are of tremendous interest as they constitute an important class of natural and synthetic compounds exhibiting diverse useful biological activities that hold attractive potential for clinical translation as therapeutic agents in alleviation of a myriad of diseases. Therapy for fungal infections is based mainly on four classes of antifungals: azoles, echinocandins, polyenes, and pyrimidine analogs.Electric Literature of C22H23N5O2

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Zhang, Wei et al. published their research in British Journal of Cancer in 2020 | CAS: 1373422-53-7

3-((2-(Pyridin-2-yl)-6-(1,2,4,5-tetrahydro-3H-benzo[d]azepin-3-yl)pyrimidin-4-yl)amino)propanoic acid (cas: 1373422-53-7) belongs to pyrimidine derivatives. The pyrimidine nitrogenous bases are derived from the organic compound pyrimidine through the addition of various functional groups. Drugs having the pyrimidine motif have manifested to exhibit gratifying biological activity like anticancer, antiviral, anti-inflammatory, antibacterial, and antihypertensive activities.Recommanded Product: 1373422-53-7

Therapeutically targeting head and neck squamous cell carcinoma through synergistic inhibition of LSD1 and JMJD3 by TCP and GSK-J1 was written by Zhang, Wei;Cheng, Jie;Diao, Pengfei;Wang, Dongmiao;Jiang, Hongbing;Wang, Yanling. And the article was included in British Journal of Cancer in 2020.Recommanded Product: 1373422-53-7 The following contents are mentioned in the article:

Background: The histone demethylase LSD1 is a key mediator driving tumorigenesis, which holds potential as a promising therapeutic target. However, treatment with LSD1 inhibitors alone failed to result in complete cancer regression. Methods: The synergistic effects of TCP (a LSD1 inhibitor) and GSK-J1 (a JMJD3 inhibitor) against HNSCC were determined in vitro and in preclin. animal models. Genes modulated by chem. agents or siRNAs in HNSCC cells were identified by RNA-seq and further functionally interrogated by bioinformatics approach. Integrative siRNA-mediated gene knockdown, rescue experiment and ChIP-qPCR assays were utilized to characterize the mediators underlying the therapeutic effects conferred by TCP and GSK-J1. Results: Treatment with TCP and GSK-J1 impaired cell proliferation, induced apoptosis and senescence in vitro, which were largely recapitulated by simultaneous LSD1 and JMJD3 knockdown. Combinational treatment inhibited tumor growth and progression in vivo. Differentially expressed genes modulated by TCP and GSK-J1 were significantly enriched in cell proliferation, apoptosis and cancer-related pathways. SPP1 was identified as the mediator of synergy underlying the pro-apoptosis effects conferred by TCP and GSK-J1. Co-upregulation of LSD1 and JMJD3 associated with worse prognosis in patients with HNSCC. Conclusions: Our findings revealed a novel therapeutic strategy of simultaneous LSD1 and JMJD3 inhibition against HNSCC. This study involved multiple reactions and reactants, such as 3-((2-(Pyridin-2-yl)-6-(1,2,4,5-tetrahydro-3H-benzo[d]azepin-3-yl)pyrimidin-4-yl)amino)propanoic acid (cas: 1373422-53-7Recommanded Product: 1373422-53-7).

3-((2-(Pyridin-2-yl)-6-(1,2,4,5-tetrahydro-3H-benzo[d]azepin-3-yl)pyrimidin-4-yl)amino)propanoic acid (cas: 1373422-53-7) belongs to pyrimidine derivatives. The pyrimidine nitrogenous bases are derived from the organic compound pyrimidine through the addition of various functional groups. Drugs having the pyrimidine motif have manifested to exhibit gratifying biological activity like anticancer, antiviral, anti-inflammatory, antibacterial, and antihypertensive activities.Recommanded Product: 1373422-53-7

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Wang, Lihui et al. published their research in Cell Death & Disease in 2018 | CAS: 1373422-53-7

3-((2-(Pyridin-2-yl)-6-(1,2,4,5-tetrahydro-3H-benzo[d]azepin-3-yl)pyrimidin-4-yl)amino)propanoic acid (cas: 1373422-53-7) belongs to pyrimidine derivatives. Pyrimidines are isomeric with two other forms of diazines: pyridazine, with the nitrogen atoms in the 1 and 2 positions; and pyrazine, with the nitrogen atoms in the 1 and 4 positions. As nucleotides in DNA and RNA, pyrimidine nucleotide derivatives have a wide range of biological applications. For example, pyrimidine derivatives are useful in DNA repair studies involving cancer and epigenetics.Application of 1373422-53-7

Targeting EHMT2 reverses EGFR-TKI resistance in NSCLC by epigenetically regulating the PTEN/AKT signaling pathway was written by Wang, Lihui;Dong, Xiaoyu;Ren, Yong;Luo, Juanjuan;Liu, Pei;Su, Dongsheng;Yang, Xiaojun. And the article was included in Cell Death & Disease in 2018.Application of 1373422-53-7 The following contents are mentioned in the article:

Epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) resistance is a major obstacle in the treatment of non-small cell lung cancer (NSCLC). Epigenetic alterations have been shown to be involved in NSCLC oncogenesis; however, their function in EGFR-TKI resistance remains uncharacterized. Here, we found that an EHMT2 inhibitor, UNC0638, can significantly inhibit cell growth and induce apoptosis in EGFR-TKI-resistant NSCLC cells. Addnl., we also found that EHMT2 expression and enzymic activity levels were elevated in EGFR-TKI-resistant NSCLC cells. Moreover, we determined that genetic or pharmacol. inhibition of EHMT2 expression enhanced TKI sensitivity and suppressed migration and tumor sphere formation in EGFR-TKI-resistant NSCLC cells. Further investigation revealed that EHMT2 contributed to PTEN transcriptional repression and thus facilitated AKT pathway activation. The neg. relationship between EHMT2 and PTEN was confirmed by our clin. study. Furthermore, we determined that combination treatment with the EHMT2 inhibitor and Erlotinib resulted in enhanced antitumor effects in a preclin. EGFR-TKI-resistance model. We also found that high EHMT2 expression along with low PTEN expression can predict poor overall survival in patients with NSCLC. In summary, our findings showed that EHMT2 facilitated EGFR-TKI resistance by regulating the PTEN/AKT pathway in NSCLC cells, suggesting that EHMT2 may be a target in the clin. treatment of EGFR-TKI-resistant NSCLC. This study involved multiple reactions and reactants, such as 3-((2-(Pyridin-2-yl)-6-(1,2,4,5-tetrahydro-3H-benzo[d]azepin-3-yl)pyrimidin-4-yl)amino)propanoic acid (cas: 1373422-53-7Application of 1373422-53-7).

3-((2-(Pyridin-2-yl)-6-(1,2,4,5-tetrahydro-3H-benzo[d]azepin-3-yl)pyrimidin-4-yl)amino)propanoic acid (cas: 1373422-53-7) belongs to pyrimidine derivatives. Pyrimidines are isomeric with two other forms of diazines: pyridazine, with the nitrogen atoms in the 1 and 2 positions; and pyrazine, with the nitrogen atoms in the 1 and 4 positions. As nucleotides in DNA and RNA, pyrimidine nucleotide derivatives have a wide range of biological applications. For example, pyrimidine derivatives are useful in DNA repair studies involving cancer and epigenetics.Application of 1373422-53-7

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Plotkin, Amy et al. published their research in Breast Cancer Research and Treatment in 2014 | CAS: 1373422-53-7

3-((2-(Pyridin-2-yl)-6-(1,2,4,5-tetrahydro-3H-benzo[d]azepin-3-yl)pyrimidin-4-yl)amino)propanoic acid (cas: 1373422-53-7) belongs to pyrimidine derivatives. The pyrimidine nitrogenous bases are derived from the organic compound pyrimidine through the addition of various functional groups. We all know its importance to life – pyrimidine and purine bases are included in the structure of DNA and RNA.Recommanded Product: 3-((2-(Pyridin-2-yl)-6-(1,2,4,5-tetrahydro-3H-benzo[d]azepin-3-yl)pyrimidin-4-yl)amino)propanoic acid

Transcriptional repression of ER through hMAPK dependent histone deacetylation by class I HDACs was written by Plotkin, Amy;Volmar, Claude-Henry;Wahlestedt, Claes;Ayad, Nagi;El-Ashry, Dorraya. And the article was included in Breast Cancer Research and Treatment in 2014.Recommanded Product: 3-((2-(Pyridin-2-yl)-6-(1,2,4,5-tetrahydro-3H-benzo[d]azepin-3-yl)pyrimidin-4-yl)amino)propanoic acid The following contents are mentioned in the article:

Anti-estrogen therapies are not effective in ER- breast cancers, thus identifying mechanisms underlying lack of ER expression in ER- breast cancers is imperative. We have previously demonstrated that hyperactivation of MAPK (hMAPK) downstream of overexpressed EGFR or overexpression/amplification of Her2 represses ER protein and mRNA expression. Abrogation of hMAPK in ER- breast cancer cell lines and primary cultures causes re-expression of ER and restoration of anti-estrogen responses. This study was performed to identify mechanisms of hMAPK-induced transcriptional repression of ER. We found that ER promoter activity is significantly reduced in the presence of hMAPK signaling, yet did not identify specific promoter sequences responsible for this repression. We performed an epigenetic compound screen in an ER- breast cancer cell line that expresses hMAPK yet does not exhibit ER promoter hypermethylation. A number of HDAC inhibitors were identified and confirmed to modulate ER expression and estrogen signaling in multiple ER- cell lines and tumor samples lacking ER promoter methylation. siRNA-mediated knockdown of HDACs 1, 2, and 3 reversed the mRNA repression in multiple breast cancer cell lines and primary cultures and ER promoter-associated histone acetylation increased following MAPK inhibition. These data implicate histone deacetylation downstream of hMAPK in the observed ER mRNA repression associated with hMAPK. Importantly, histone deacetylation appears to be a common mechanism in the transcriptional repression of ER between ER- breast cancers with or without ER promoter hypermethylation. This study involved multiple reactions and reactants, such as 3-((2-(Pyridin-2-yl)-6-(1,2,4,5-tetrahydro-3H-benzo[d]azepin-3-yl)pyrimidin-4-yl)amino)propanoic acid (cas: 1373422-53-7Recommanded Product: 3-((2-(Pyridin-2-yl)-6-(1,2,4,5-tetrahydro-3H-benzo[d]azepin-3-yl)pyrimidin-4-yl)amino)propanoic acid).

3-((2-(Pyridin-2-yl)-6-(1,2,4,5-tetrahydro-3H-benzo[d]azepin-3-yl)pyrimidin-4-yl)amino)propanoic acid (cas: 1373422-53-7) belongs to pyrimidine derivatives. The pyrimidine nitrogenous bases are derived from the organic compound pyrimidine through the addition of various functional groups. We all know its importance to life – pyrimidine and purine bases are included in the structure of DNA and RNA.Recommanded Product: 3-((2-(Pyridin-2-yl)-6-(1,2,4,5-tetrahydro-3H-benzo[d]azepin-3-yl)pyrimidin-4-yl)amino)propanoic acid

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia