The important role of 2,4-Diaminopyrimidine-5-carboxaldehyde

At the same time, in my other blogs, there are other synthetic methods of this type of compound,20781-06-0, 2,4-Diaminopyrimidine-5-carboxaldehyde, and friends who are interested can also refer to it.

With the rapid development and complex challenges of chemical substances, the synthesis of new drugs is usually one of the most effective ways to increase yield.20781-06-0, name is 2,4-Diaminopyrimidine-5-carboxaldehyde, molecular formula is C5H6N4O, molecular weight is 138.1273, as common compound, the synthetic route is as follows.Safety of 2,4-Diaminopyrimidine-5-carboxaldehyde

EXAMPLE 111 6-Pyridin-2-yl-pyrido[2,3-d]pyrimidine-2,7-diamine The procedure of Example 1 was followed to react 0.84 mL of 2-pyridylacetonitrile and 1.0 g of 2,4-diamino-5-pyrimidinecarboxaldehyde to afford the title compound, mp 312-321 C. Analysis calculated for C12 H10 N6.0.07 H2 O: C, 60.18; H, 4.27; N, 35.09. Found: C, 60.46; H, 4.34; N, 34.70.

At the same time, in my other blogs, there are other synthetic methods of this type of compound,20781-06-0, 2,4-Diaminopyrimidine-5-carboxaldehyde, and friends who are interested can also refer to it.

Reference:
Patent; Blankley; Clifton John; Doherty; Annette Marian; Hamby; James Marino; Panek; Robert Lee; Schroeder; Mel Conrad; Showalter; Howard Daniel Hollis; Connolly; Cleo; US5733913; (1998); A;,
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Brief introduction of 2,4-Diaminopyrimidine-5-carboxaldehyde

The synthetic route of 20781-06-0 has been constantly updated, and we look forward to future research findings.

In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. 20781-06-0, name is 2,4-Diaminopyrimidine-5-carboxaldehyde, the common compound, a new synthetic route is introduced below. SDS of cas: 20781-06-0

EXAMPLE 109 6-Pyridin-4-yl-pyrido[2,3-d]pyrimidine-2,7-diamine To cooled (0 C.) 2-ethoxyethanol (13 mL) was added portionwise 0.30 g of sodium hydride (60% in mineral oil), and the suspension was stirred for 10 minutes. To this suspension was added 1.06 g of 4-pyridylaceto-nitrile hydrochloride, and the mixture was stirred at room temperature for 30 minutes. The neutralized solution of 4-pyridylacetonitrile in 2-ethoxyethanol was added to a reaction mixture containing sodium 2-ethoxyethoxide (prepared from 0.11 g of sodium hydride and 4.76 mL of 2-ethoxyethanol) and 0.9 g of 2,4-diamino-5-pyrimidinecarboxaldehyde. The resulting mixture was heated at reflux for 2 hours, cooled, and the insoluble product washed with diethylether and ethyl acetate to afford the title compound; mp >340 C.; MS(CI). Analysis calculated for C12 H10 N6.0.05 H2 O: C, 60.27; H, 4.26; N, 35.14. Found: C, 60.35; H, 4.31; N, 34.75.

The synthetic route of 20781-06-0 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; Blankley; Clifton John; Doherty; Annette Marian; Hamby; James Marino; Panek; Robert Lee; Schroeder; Mel Conrad; Showalter; Howard Daniel Hollis; Connolly; Cleo; US5733913; (1998); A;,
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Application of 2,4-Diaminopyrimidine-5-carboxaldehyde

According to the analysis of related databases, 20781-06-0, the application of this compound in the production field has become more and more popular.

Reference of 20781-06-0, The major producers of chemicals have been the Europe, Japan and China. Due to the growing call for a cleaner, greener environment, people will have to find innovative ways to maintain their relevance. Here is a compound 20781-06-0, name is 2,4-Diaminopyrimidine-5-carboxaldehyde. This compound has unique chemical properties. The synthetic route is as follows.

(5) Preparation of IA-1 (target): A mixture of 0.188 g (1 mmol) of compound of formula V and 0.447 g (1.5 mmol) of compound of formula III-1, 0.126 g (2 mmol) of sodium cyanoborohydride was added and maintained in a reflux state for 24 hours in 15 mL of methanol, The residue was purified by silica gel column chromatography (eluent: methanol: dichloromethane = 1: 10, and the residue was washed with ethyl acetate, washed with ethyl acetate, and the organic phase was washed with saturated brine. The organic phase was concentrated (the solvent was removed under reduced pressure) v / v) to give a white solid (IA-I) in 65% yield

According to the analysis of related databases, 20781-06-0, the application of this compound in the production field has become more and more popular.

Reference:
Patent; East China University of Science and Technology; Zhu Jin; Huang Jin; Chen Wenhua; Yao Xue; Ling Dazheng; Wang Manjiong; Jiang Hualiang; Li Jian; (21 pag.)CN106938997; (2017); A;,
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia