Tabchy, Adel et al. published their research in PLoS One in 2013 | CAS: 219580-11-7

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. As nucleotides in DNA and RNA, pyrimidine nucleotide derivatives have a wide range of biological applications. For example, pyrimidine derivatives are useful in DNA repair studies involving cancer and epigenetics.Related Products of 219580-11-7

Systematic identification of combinatorial drivers and targets in cancer cell lines was written by Tabchy, Adel;Eltonsy, Nevine;Housman, David E.;Mills, Gordon B.. And the article was included in PLoS One in 2013.Related Products of 219580-11-7 The following contents are mentioned in the article:

There is an urgent need to elicit and validate highly efficacious targets for combinatorial intervention from large scale ongoing mol. characterization efforts of tumors. We established an in silico bioinformatic platform in concert with a high throughput screening platform evaluating 37 novel targeted agents in 669 extensively characterized cancer cell lines reflecting the genomic and tissue-type diversity of human cancers, to systematically identify combinatorial biomarkers of response and co-actionable targets in cancer. Genomic biomarkers discovered in a 141 cell line training set were validated in an independent 359 cell line test set. We identified co-occurring and mutually exclusive genomic events that represent potential drivers and combinatorial targets in cancer. We demonstrate multiple cooperating genomic events that predict sensitivity to drug intervention independent of tumor lineage. The coupling of scalable in silico and biol. high throughput cancer cell line platforms for the identification of co-events in cancer delivers rational combinatorial targets for synthetic lethal approaches with a high potential to pre-empt the emergence of resistance. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7Related Products of 219580-11-7).

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. As nucleotides in DNA and RNA, pyrimidine nucleotide derivatives have a wide range of biological applications. For example, pyrimidine derivatives are useful in DNA repair studies involving cancer and epigenetics.Related Products of 219580-11-7

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Turczyk, Lukasz et al. published their research in Neoplasia (New York, NY, United States) in 2017 | CAS: 219580-11-7

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. The aromatic compound pyrimidine, and its derivatives, are ubiquitous in nature. They are found in nucleic acids, vitamins, amino acids, antibiotics, alkaloids, and a variety of toxins. Therapy for fungal infections is based mainly on four classes of antifungals: azoles, echinocandins, polyenes, and pyrimidine analogs.Recommanded Product: 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea

FGFR2-Driven Signaling Counteracts Tamoxifen Effect on ER伪-Positive Breast Cancer Cells was written by Turczyk, Lukasz;Kitowska, Kamila;Mieszkowska, Magdalena;Mieczkowski, Kamil;Czaplinska, Dominika;Piasecka, Dominika;Kordek, Radzislaw;Skladanowski, Andrzej C.;Potemski, Piotr;Romanska, Hanna M.;Sadej, Rafal. And the article was included in Neoplasia (New York, NY, United States) in 2017.Recommanded Product: 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea The following contents are mentioned in the article:

Signaling mediated by growth factors receptors has long been suggested as one of the key factors responsible for failure of endocrine treatment in breast cancer (BCa). Herein we present that in the presence of tamoxifen, FGFs (Fibroblast Growth Factors) promote BCa cell growth with the strongest effect being produced by FGF7. FGFR2 was identified as a mediator of FGF7 action and the FGFR2-induced signaling was found to underlie cancer-associated fibroblasts-dependent resistance to tamoxifen. FGF7/FGFR2-triggered pathway was shown to induce ER phosphorylation, ubiquitination and subsequent ER proteasomal degradation which counteracted tamoxifen-promoted ER stabilization. We also identified activation of PI3K/AKT signaling targeting ER-Ser167 and regulation of Bcl-2 expression as a mediator of FGFR2-promoted resistance to tamoxifen. Anal. of tissue samples from patients with invasive ductal carcinoma revealed an inversed correlation between expression of FGFR2 and ER, thus supporting our in vitro data. These results unveil the complexity of ER regulation by FGFR2-mediated signaling likely to be associated with BCa resistance to endocrine therapy. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7Recommanded Product: 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea).

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. The aromatic compound pyrimidine, and its derivatives, are ubiquitous in nature. They are found in nucleic acids, vitamins, amino acids, antibiotics, alkaloids, and a variety of toxins. Therapy for fungal infections is based mainly on four classes of antifungals: azoles, echinocandins, polyenes, and pyrimidine analogs.Recommanded Product: 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Xiao, Lu et al. published their research in Biochimica et Biophysica Acta, Molecular Cell Research in 2020 | CAS: 219580-11-7

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Heterocyclic compounds bearing the pyrimidine core are of tremendous interest as they constitute an important class of natural and synthetic compounds exhibiting diverse useful biological activities that hold attractive potential for clinical translation as therapeutic agents in alleviation of a myriad of diseases. Therapy for fungal infections is based mainly on four classes of antifungals: azoles, echinocandins, polyenes, and pyrimidine analogs.COA of Formula: C28H41N7O3

Deciphering a distinct regulatory network of TEAD4, CDX2 and GATA3 in humans for trophoblast transition from embryonic stem cells was written by Xiao, Lu;Ma, Lishi;Wang, Zhijian;Yu, Yanhong;Lye, Stephen J.;Shan, Yongli;Wei, Yanxing. And the article was included in Biochimica et Biophysica Acta, Molecular Cell Research in 2020.COA of Formula: C28H41N7O3 The following contents are mentioned in the article:

The placenta is an essential organ for the fetus, but its regulatory mechanism for formation of functional trophoblast lineage remains elusive in humans. Although widely known in mice, TEAD4 and its downstream targets CDX2 and GATA3 have not been determined in human models. In this work, we used a human model of trophoblast transition from BAP (BMP4, A83-01 and PD173074)-treated human embryonic stem cells (hESCs) and performed multiple gain- and loss-of-function tests of TEAD4, CDX2 or GATA3 to study their roles during this process. Although hESCs with TEAD4 deletion maintain pluripotency, their trophoblast transition potentials are attenuated. This impaired trophoblast transition could be rescued by sep. overexpressing TEAD4, CDX2 or GATA3. Furthermore, trophoblast transition from hESCs is also attenuated by knockout of CDX2 but remains unaffected with deletion of GATA3. However, CDX2-overexpressed hESCs maintain pluripotency, whereas overexpression of GATA3 in hESCs leads to spontaneous differentiation including trophoblast lineage. In brief, our findings using a human model of trophoblast transition from BAP-treated hESCs reveal transcription roles of TEAD4, CDX2 and GATA in humans that are different from those in mice. We hope that this evidence can aid in understanding the distinct transcriptional network regulating trophoblast development in humans. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7COA of Formula: C28H41N7O3).

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Heterocyclic compounds bearing the pyrimidine core are of tremendous interest as they constitute an important class of natural and synthetic compounds exhibiting diverse useful biological activities that hold attractive potential for clinical translation as therapeutic agents in alleviation of a myriad of diseases. Therapy for fungal infections is based mainly on four classes of antifungals: azoles, echinocandins, polyenes, and pyrimidine analogs.COA of Formula: C28H41N7O3

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Das, Jharna R. et al. published their research in Disease Models & Mechanisms in 2021 | CAS: 219580-11-7

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives. Therapy for fungal infections is based mainly on four classes of antifungals: azoles, echinocandins, polyenes, and pyrimidine analogs.Recommanded Product: 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea

Circulating fibroblast growth factor-2 precipitates HIV nephropathy in mice was written by Das, Jharna R.;Jerebtsova, Marina;Tang, Pingtao;Li, Jinliang;Yu, Jing;Ray, Patricio E.. And the article was included in Disease Models & Mechanisms in 2021.Recommanded Product: 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea The following contents are mentioned in the article:

People of African ancestry living with the human immunodeficiency virus-1 (HIV-1) are at risk of developing HIV-associated nephropathy (HIVAN). Children with HIVAN frequently show high plasma fibroblast growth factor-2 (FGF-2) levels; however, the role of circulating FGF-2 in the pathogenesis of childhood HIVAN is unclear. Here, we explored how circulating FGF-2 affected the outcome of HIVAN in young HIV-Tg26 mice. Briefly, we demonstrated that FGF-2 was preferentially recruited in the kidneys of mice without pre-existing kidney disease, precipitating HIVAN by activating phosphorylated extracellular signalregulated kinase (pERK) in renal epithelial cells, without inducing the expression of HIV-1 genes. Wild-type mice injected with recombinant adenoviral FGF-2 (rAd-FGF-2) vectors carrying a secreted form of human FGF-2 developed transient and reversible HIVAN-like lesions, including proteinuria and glomerular enlargement. HIV-Tg26 mice injected with rAd-FGF-2 vectors developed more-significant proliferative and pro-fibrotic inflammatory lesions, similar to those seen in childhood HIVAN. These lesions were partially reversed by treating mice with the FGF/VEGF receptor tyrosine kinase inhibitor PD173074. These findings suggest that high plasma FGF-2 levels may be an independent risk factor for precipitating HIVAN in young children. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7Recommanded Product: 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea).

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives. Therapy for fungal infections is based mainly on four classes of antifungals: azoles, echinocandins, polyenes, and pyrimidine analogs.Recommanded Product: 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Santolla, Maria Francesca et al. published their research in International Journal of Molecular Sciences in 2021 | CAS: 219580-11-7

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. The pyrimidine derivatives can easily interact with enzymes, genetic materials, and bio components within the cell. Drugs having the pyrimidine motif have manifested to exhibit gratifying biological activity like anticancer, antiviral, anti-inflammatory, antibacterial, and antihypertensive activities.Related Products of 219580-11-7

S100A4 is involved in stimulatory effects elicited by the FGF2/FGFR1 signaling pathway in triple-negative breast cancer (TNBC) cells was written by Santolla, Maria Francesca;Talia, Marianna;Maggiolini, Marcello. And the article was included in International Journal of Molecular Sciences in 2021.Related Products of 219580-11-7 The following contents are mentioned in the article:

Triple-neg. breast cancer (TNBC) is an aggressive breast tumor subtype characterized by poor clin. outcome. In recent years, numerous advancements have been made to better understand the biol. landscape of TNBC, though appropriate targets still remain to be determined In the present study, we have determined that the expression levels of FGF2 and S100A4 are higher in TNBC with respect to non-TNBC patients when analyzing ”The Invasive Breast Cancer Cohort of The Cancer Genome Atlas” (TCGA) dataset. In addition, we have found that the gene expression of FGF2 is pos. correlated with S100A4 in TNBC samples. Performing quant. PCR, Western blot, CRISPR/Cas9 genome editing, promoter studies, immunofluorescence anal., subcellular fractionation studies, and ChIP assays, we have also demonstrated that FGF2 induces in TNBC cells the upregulation and secretion of S100A4 via FGFR1, along with the ERK1/2-AKT-c-Rel transduction signaling. Using conditioned medium from TNBC cells stimulated with FGF2, we have also ascertained that the paracrine activation of the S100A4/RAGE pathway triggers angiogenic effects in vascular endothelial cells (HUVECs) and promotes the migration of cancer-associated fibroblasts (CAFs). Collectively, our data provide novel insights into the action of the FGF2/FGFR1 axis through S100A4 toward stimulatory effects elicited in TNBC cells. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7Related Products of 219580-11-7).

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. The pyrimidine derivatives can easily interact with enzymes, genetic materials, and bio components within the cell. Drugs having the pyrimidine motif have manifested to exhibit gratifying biological activity like anticancer, antiviral, anti-inflammatory, antibacterial, and antihypertensive activities.Related Products of 219580-11-7

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Kitagawa, Daisuke et al. published their research in Journal of Biochemistry in 2012 | CAS: 219580-11-7

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. For example, the neurotoxin tetrodotoxin is a pyrimidine derivative. It is found in a number of species including the Japanese puffer fish, the blue-ringed octopus, and the orange-bellied newt. Tetrodotoxin prevents the transmission of nerve signals and can result in paralysis and death.Reference of 219580-11-7

Characterization of kinase inhibitors using different phosphorylation states of colony stimulating factor-1 receptor tyrosine kinase was written by Kitagawa, Daisuke;Gouda, Masaki;Kirii, Yasuyuki;Sugiyama, Naoyuki;Ishihama, Yasushi;Fujii, Ikuo;Narumi, Yugo;Akita, Kensaku;Yokota, Koichi. And the article was included in Journal of Biochemistry in 2012.Reference of 219580-11-7 The following contents are mentioned in the article:

It is known that some kinase inhibitors are sensitive to the phosphorylation state of the kinase, and therefore those compounds can discriminate between a phosphorylated and unphosphorylated protein. In this study, we prepared two colony stimulating factor-1 receptor (CSF-1R) tyrosine kinase proteins: one highly phosphorylated by autophosphorylation and the other dephosphorylated by phosphatase treatment. These kinases were subjected to an activity-based assay to investigate the effect of their phosphorylation state on the potency of several kinase inhibitors. Dasatinib, sorafenib, PD173074 and staurosporine showed similar inhibition against different phosphorylation states of CSF-1R, but pazopanib, sunitinib, GW2580 and imatinib showed more potent inhibition against dephosphorylated CSF-1R. Binding anal. of the inhibitors to the two different phosphorylation forms of CSF-1R, using surface plasmon resonance spectrometry, revealed that staurosporine bound to both forms with similar affinity, but sunitinib bound to the dephosphorylated form with higher affinity. Thus, these observations suggest that sunitinib binds preferentially to the inactive form, preventing the activation of CSF-1R. Screening against different activation states of kinases should be an important approach for prioritizing compounds and should facilitate inhibitor design. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7Reference of 219580-11-7).

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. For example, the neurotoxin tetrodotoxin is a pyrimidine derivative. It is found in a number of species including the Japanese puffer fish, the blue-ringed octopus, and the orange-bellied newt. Tetrodotoxin prevents the transmission of nerve signals and can result in paralysis and death.Reference of 219580-11-7

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Lamont, F. R. et al. published their research in British Journal of Cancer in 2011 | CAS: 219580-11-7

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives. Drugs having the pyrimidine motif have manifested to exhibit gratifying biological activity like anticancer, antiviral, anti-inflammatory, antibacterial, and antihypertensive activities.Formula: C28H41N7O3

Small molecule FGF receptor inhibitors block FGFR-dependent urothelial carcinoma growth in vitro and in vivo was written by Lamont, F. R.;Tomlinson, D. C.;Cooper, P. A.;Shnyder, S. D.;Chester, J. D.;Knowles, M. A.. And the article was included in British Journal of Cancer in 2011.Formula: C28H41N7O3 The following contents are mentioned in the article:

Background: Activating mutations of FGFR3 are frequently identified in superficial urothelial carcinoma (UC) and increased expression of FGFR1 and FGFR3 are common in both superficial and invasive UC. Methods: The effects of inhibition of receptor activity by three small mol. inhibitors (PD173074, TKI-258 and SU5402) were investigated in a panel of bladder tumor cell lines with known FGFR expression levels and FGFR3 mutation status. Results: All inhibitors prevented activation of FGFR3, and inhibited downstream MAPK pathway signalling. Response was related to FGFR3 and/or FGFR1 expression levels. Cell lines with the highest levels of FGFR expression showed the greatest response and little or no effect was measured in normal human urothelial cells or in UC cell lines with activating RAS gene mutations. In sensitive cell lines, the drugs induced cell cycle arrest and/or apoptosis. IC50 values for PD173074 and TKI-258 were in the nanomolar concentration range compared with micromolar concentrations for SU5402. PD173074 showed the greatest effects in vitro and in vivo significantly delayed the growth of s.c. bladder tumor xenografts. Conclusion: These results indicate that inhibition of FGFR1 and wild-type or mutant FGFR3 may represent a useful therapeutic approach in patients with both non-muscle invasive and muscle invasive UC. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7Formula: C28H41N7O3).

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives. Drugs having the pyrimidine motif have manifested to exhibit gratifying biological activity like anticancer, antiviral, anti-inflammatory, antibacterial, and antihypertensive activities.Formula: C28H41N7O3

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Song, Xiaoping et al. published their research in Investigational New Drugs in 2021 | CAS: 219580-11-7

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidines are isomeric with two other forms of diazines: pyridazine, with the nitrogen atoms in the 1 and 2 positions; and pyrazine, with the nitrogen atoms in the 1 and 4 positions. For example, the neurotoxin tetrodotoxin is a pyrimidine derivative. It is found in a number of species including the Japanese puffer fish, the blue-ringed octopus, and the orange-bellied newt. Tetrodotoxin prevents the transmission of nerve signals and can result in paralysis and death.Recommanded Product: 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea

FGFR leads to sustained activation of STAT3 to mediate resistance to EGFR-TKIs treatment was written by Song, Xiaoping;Tang, Wei;Peng, Hui;Qi, Xin;Li, Jing. And the article was included in Investigational New Drugs in 2021.Recommanded Product: 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea The following contents are mentioned in the article:

Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) have led to great advances in the treatment of non-small cell lung cancer (NSCLC), but the emergence of drug resistance severely limits their clin. use. Thus, elucidation of the mechanism underlying resistance to EGFR-TKIs is of great importance. In our study, sustained activation of STAT3 was confirmed to be involved in resistance to EGFR-TKIs, and this resistance occurred regardless of exposure time, EGFR-TKIs type, and even cancer cell type. Mechanistically, the sustained activation of STAT3 was not related to gp130/JAK signalling pathway or HER2/EGFR heterodimer formation, while related to the expression and activation levels of STAT3. Furthermore, FGFR was shown to bind more strongly to STAT3 after gefitinib treatment, and the inhibition of FGFR reduced the phosphorylation of STAT3, thereby counteracting the effects of EGFR-TKIs and resulting in the synergistic inhibition of cancer cell proliferation. Taken together, the FGFR/STAT3 axis mediates the sustained activation of STAT3 upon EGFR-TKI treatment. This finding elucidates a new mechanism underlying drug resistance to EGFR-TKIs that the FGFR/STAT3 axis mediates the sustained activation of STAT3, providing theor. support for considering the combination of TKIs and FGFR inhibitors in clin. cancer treatment. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7Recommanded Product: 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea).

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. Pyrimidines are isomeric with two other forms of diazines: pyridazine, with the nitrogen atoms in the 1 and 2 positions; and pyrazine, with the nitrogen atoms in the 1 and 4 positions. For example, the neurotoxin tetrodotoxin is a pyrimidine derivative. It is found in a number of species including the Japanese puffer fish, the blue-ringed octopus, and the orange-bellied newt. Tetrodotoxin prevents the transmission of nerve signals and can result in paralysis and death.Recommanded Product: 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Vleeshouwer-Neumann, Terra et al. published their research in PLoS One in 2015 | CAS: 219580-11-7

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. The pyrimidine nitrogenous bases are derived from the organic compound pyrimidine through the addition of various functional groups. Therapy for fungal infections is based mainly on four classes of antifungals: azoles, echinocandins, polyenes, and pyrimidine analogs.SDS of cas: 219580-11-7

Histone deacetylase inhibitors antagonize distinct pathways to suppress tumorigenesis of embryonal rhabdomyosarcoma was written by Vleeshouwer-Neumann, Terra;Phelps, Michael;Bammler, Theo K.;MacDonald, James W.;Jenkins, Isaac;Chen, Eleanor Y.. And the article was included in PLoS One in 2015.SDS of cas: 219580-11-7 The following contents are mentioned in the article:

Embryonal rhabdomyosarcoma (ERMS) is the most common soft tissue cancer in children. The prognosis of patients with relapsed or metastatic disease remains poor. ERMS genomes show few recurrent mutations, suggesting that other mol. mechanisms such as epigenetic regulation might play a major role in driving ERMS tumor biol. In this study, we have demonstrated the diverse roles of histone deacetylases (HDACs) in the pathogenesis of ERMS by characterizing effects of HDAC inhibitors, trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA; also known as vorinostat) in vitro and in vivo. TSA and SAHA suppress ERMS tumor growth and progression by inducing myogenic differentiation as well as reducing the self-renewal and migratory capacity of ERMS cells. Differential expression profiling and pathway anal. revealed downregulation of key oncogenic pathways upon HDAC inhibitor treatment. By gain-of-function, loss-of-function, and chromatin immunoprecipitation (ChIP) studies, we show that Notch1- and EphrinB1- mediated pathways are regulated by HDACs to inhibit differentiation and enhance migratory capacity of ERMS cells, resp. Our study demonstrates that aberrant HDAC activity plays a major role in ERMS pathogenesis. Druggable targets in the mol. pathways affected by HDAC inhibitors represent novel therapeutic options for ERMS patients. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7SDS of cas: 219580-11-7).

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. The pyrimidine nitrogenous bases are derived from the organic compound pyrimidine through the addition of various functional groups. Therapy for fungal infections is based mainly on four classes of antifungals: azoles, echinocandins, polyenes, and pyrimidine analogs.SDS of cas: 219580-11-7

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Yabe, Shinichiro et al. published their research in Proceedings of the National Academy of Sciences of the United States of America in 2016 | CAS: 219580-11-7

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. The pyrimidine derivatives can easily interact with enzymes, genetic materials, and bio components within the cell. As nucleotides in DNA and RNA, pyrimidine nucleotide derivatives have a wide range of biological applications. For example, pyrimidine derivatives are useful in DNA repair studies involving cancer and epigenetics.Reference of 219580-11-7

Comparison of syncytiotrophoblast generated from human embryonic stem cells and from term placentas was written by Yabe, Shinichiro;Alexenko, Andrei P.;Amita, Mitsuyoshi;Yang, Ying;Schust, Danny J.;Sadovsky, Yoel;Ezashi, Toshihiko;Roberts, R. Michael. And the article was included in Proceedings of the National Academy of Sciences of the United States of America in 2016.Reference of 219580-11-7 The following contents are mentioned in the article:

Human embryonic stem cells (ESCs) readily commit to the trophoblast lineage after exposure to bone morphogenetic protein-4 (BMP-4) and two small compounds, an activin A signaling inhibitor and a FGF2 signaling inhibitor (BMP4/A83-01/PD173074; BAP treatment). During differentiation, areas emerge within the colonies with the biochem. and morphol. features of syncytiotrophoblast (STB). Relatively pure fractions of mononucleated cytotrophoblast (CTB) and larger syncytial sheets displaying the expected markers of STB can be obtained by differential filtration of dispersed colonies through nylon strainers. RNA-seq anal. of these fractions has allowed them to be compared with cytotrophoblasts isolated from term placentas before and after such cells had formed syncytia. Although it is clear from extensive gene marker anal. that both ESC- and placenta-derived syncytial cells are trophoblast, each with the potential to transport a wide range of solutes and synthesize placental hormones, their transcriptome profiles are sufficiently dissimilar to suggest that the two cell types have distinct pedigrees and represent functionally different kinds of STB. We propose that the STB generated from human ESCs represents the primitive syncytium encountered in early pregnancy soon after the human trophoblast invades into the uterine wall. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7Reference of 219580-11-7).

1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. The pyrimidine derivatives can easily interact with enzymes, genetic materials, and bio components within the cell. As nucleotides in DNA and RNA, pyrimidine nucleotide derivatives have a wide range of biological applications. For example, pyrimidine derivatives are useful in DNA repair studies involving cancer and epigenetics.Reference of 219580-11-7

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia