A new synthetic route of 2,4-Dichloro-5-pyrimidinecarbonyl chloride

The synthetic route of 2972-52-3 has been constantly updated, and we look forward to future research findings.

Related Products of 2972-52-3 , The common heterocyclic compound, 2972-52-3, name is 2,4-Dichloro-5-pyrimidinecarbonyl chloride, molecular formula is C5HCl3N2O, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

11.2: 2,4-Dichloropyrimidine-5-carboxylic acid ethyl ester Compound 11.1 (13.5 g, 64 mmol) is dissolved in THF (100 ml). Ethanol (15 ml) is added and the mixture is stirred at ambient temperature for 10 min. The solvents are evaporated and an oil is recovered and hydrolyzed with a saturated K2CO3 solution and extracted with AcOEt (3*250 ml). The organic phase is washed with an NaCl solution (100 ml) and dried over Na2SO4. After filtering and evaporating, an orange oil is recovered (14 g, yd: 99%). 1H NMR, d6-DMSO (300 MHz): 9.16 (s, 1H), 4.37 (q, 2H, J=7.11 Hz), 1.34 (t, 3H, J=7.11 Hz).

The synthetic route of 2972-52-3 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; SANOFI-AVENTIS; US2010/222319; (2010); A1;,
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Introduction of a new synthetic route about 2972-52-3

At the same time, in my other blogs, there are other synthetic methods of this type of compound,2972-52-3, 2,4-Dichloro-5-pyrimidinecarbonyl chloride, and friends who are interested can also refer to it.

With the rapid development and complex challenges of chemical substances, the synthesis of new drugs is usually one of the most effective ways to increase yield.2972-52-3, name is 2,4-Dichloro-5-pyrimidinecarbonyl chloride, molecular formula is C5HCl3N2O, molecular weight is 211.43, as common compound, the synthetic route is as follows.Application In Synthesis of 2,4-Dichloro-5-pyrimidinecarbonyl chloride

A solution of 2,4-dichloropyrimidine-5-carbonyl chloride (1.00 g, 4.76 mmol) in ethanol (6.0 mL) was added DIPEA (2.5 raL, 14,4 mmol) slowly at 0 C under nitrogen. After 30 mm, hex-5-yn-1-amine (0.476 g, 4.91 mmol) was added in one portion. The reaction mixture was stirred at room temperature for 3.5 h, then was added dropwise to a solution of 6-azidohexan-1-amine (0.801 g, 5.64 mmol) in ethanol (4.0 mL) at 50 C After the reaction was complete (monitored by LCMS), the mixture was diluted with water (10 mL) and concentrated under a reduced pressure and filtered. The yellow solid was washed with water and dried under vacuum to be used in the next step without further purification (0.723 g, 39% over 3 steps).

At the same time, in my other blogs, there are other synthetic methods of this type of compound,2972-52-3, 2,4-Dichloro-5-pyrimidinecarbonyl chloride, and friends who are interested can also refer to it.

Reference:
Patent; THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL; WANG, Xiaodong; ZHANG, Weihe; KIREEV, Dmitri; LIU, Jing; MCIVER, Andrew Louis; WO2014/85225; (2014); A1;,
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

A new synthetic route of 2972-52-3

The synthetic route of 2972-52-3 has been constantly updated, and we look forward to future research findings.

Adding a certain compound to certain chemical reactions, such as: 2972-52-3, 2,4-Dichloro-5-pyrimidinecarbonyl chloride, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound, Product Details of 2972-52-3, blongs to pyrimidines compound. Product Details of 2972-52-3

To a solution of 2,4-dichloropyrimidine-5-carbonyl chloride (500 mg, 2.38 mmol) in dichloromethane (30 mL) was added methanol (87.6 mg, 2.73 mmol) and diisopropyeihylamine (369 mg, 2,86 mmol) at 0 ¡ãC. The resulting mixture was stirred for 1 h at 0 ¡ãC. Then the solvent was removed. The residue (461rng, 94percent) was dissolved in IPA (20 ml,) and followed by the addition of trans-4-aminocyclohexanol (301.6 mg, 2.62 mmol) then DIEA (461.4 mg, 3.57 mmol) dropwiseiy. The resulting mixture was stirred at 0 ¡ãC for 90 min. After which buiyiamine (208,8 mg, 2.86 mmol) was added, followed by DIEA (461.4 mg., 3.57 mmol). The resulting mixture was stirred at room temperature for 3 h. Water was then added. The resulting mixture was extracted with EtOAc (3X). The combined organic layers were dried (Na2SO4, filtered and concentrated. The residue was purified on ISCO to give methyl 2-(butylamino)-4-((trans-4-hydroxycyclohexyl)amino)pyrimidine-5-carboxylate (682.6 mg, 89percent over 3 steps). 1H NMR (400 MHz, CDCl3) delta 9.21 (s, 1H), S.77 (s, 1H), 6.29 (s, 1H), 4.81 – 4.64 (m, 1H), 4.51 (s, 3H), 4.46-4.38 (m, 1H), 4.13-4.1 (m, 2H), 2.89-2.81 (m, 2H), 2.74 (d, J – 9.7 Hz, 2H), 2.35 – 2.25 (m, 2H), 2.23 – 2.00 (m, 6H), 1 ,67 (t, J- 7.2 Hz, 3H); 13C NMR (101 MHz, CDCl3) delta 167.9, 162,5, 161.3, 160.3, 95.5, 69.7, 51.2, 48.3, 41. L 33.8, 31 ,7, 30.3, 20.1, 13,8; MS m/z 323.20 [M+H]+

The synthetic route of 2972-52-3 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL; WANG, Xiaodong; ZHANG, Weihe; KIREEV, Dmitri; LIU, Jing; MCIVER, Andrew Louis; WO2014/85225; (2014); A1;,
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

The origin of a common compound about 2972-52-3

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,2972-52-3, its application will become more common.

Adding a certain compound to certain chemical reactions, such as: 2972-52-3, 2,4-Dichloro-5-pyrimidinecarbonyl chloride, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound, 2972-52-3, blongs to pyrimidines compound. SDS of cas: 2972-52-3

Step-1. Preparation of 2,4-dichloro-N-methylpyrimidine-5-carboxamide (2): To a solution of methyl amine (2M) in THF (2.4 mL, 4.70 mmol) in DCM (50 ml), TEA (963 mg, 9.50 mmol) and 2,4-dichloropyrimidine-5-carbonyl chloride (1 g, 4.70 mmol) were added slowly at -78 C. for 1 h. TLC showed completion of starting material (TLC system: 10% ethyl acetate in hexane (Rf): 0.3). The reaction mixture was diluted with DCM (50 ml), washed with water (2*30 ml) and a saturated solution of NaHCO3. The organic layer was separated, dried over sodium sulphate, and concentrated. Crude compound was purified by column chromatography using silica gel (100-200 mesh) with 5% ethyl acetate in hexane to obtain 2,4-dichloro-N-methylpyrimidine-5-carboxamide as white solid. Yield: (400 mg, 33%). 1HNMR (400 MHz, CDCl3) delta 8.98 (s, 1H), 6.50 (br s, 1H), 3.07 (d, 3H, J=4.8 Hz).

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,2972-52-3, its application will become more common.

Reference:
Patent; Celgene Avilomics Research, Inc.; Haq, Nadia; Niu, Deqiang; Petter, Russell C.; Qiao, Lixin; Singh, Juswinder; Zhu, Zhendong; US2014/228322; (2014); A1;,
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

A new synthetic route of 2,4-Dichloro-5-pyrimidinecarbonyl chloride

According to the analysis of related databases, 2972-52-3, the application of this compound in the production field has become more and more popular.

Application of 2972-52-3, As we all know, there are many different methods for the synthesis of a compound, and people can choose the synthesis method that suits their own laboratory according to the actual situation. 2972-52-3, name is 2,4-Dichloro-5-pyrimidinecarbonyl chloride, molecular formula is C5HCl3N2O, The compound is widely used in many fields, so it is necessary to find a new synthetic route. The downstream synthesis method of this compound is introduced below.

To a solution of the 2,4-dichloropyrimidine-5-carbonyl chloride (24 mmol) in THF (24 ml) is added H2O (0.64 ml) at room temperature. The reaction mixture is stirred at room temperature for 0.83 h and then diluted with HaO. The mixture is extracted with AcOEt. The organic extracts are washed with brine, dried over Na2SO4, filtered, and concentrated in vacua to give the crude titled compound; 1H NMR (CDCI3) 5 6.80 (brs, 1H), 9.18 (s, 1H).

According to the analysis of related databases, 2972-52-3, the application of this compound in the production field has become more and more popular.

Reference:
Patent; NOVARTIS AG; NOVARTIS PHARMA GMBH; WO2006/18284; (2006); A1;,
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Application of Application In Synthesis of 2,4-Dichloro-5-pyrimidinecarbonyl chloride

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, 2972-52-3, 2,4-Dichloro-5-pyrimidinecarbonyl chloride.

Each compound has different characteristics, and only by selecting the characteristics of the compound suitable for a specific situation can the compound be applied on a large scale. 2972-52-3, name is 2,4-Dichloro-5-pyrimidinecarbonyl chloride. This compound has unique chemical properties. The synthetic route is as follows. Application In Synthesis of 2,4-Dichloro-5-pyrimidinecarbonyl chloride

A solution of 2,4-dichloropyrimidine-5-carbonyl chloride (1.00 g, 4.76 mmol) in ethanol (6.0 mL) was added DIPEA (2.5 raL, 14,4 mmol) slowly at 0 C under nitrogen. After 30 mm, hex-5-yn-1-amine (0.476 g, 4.91 mmol) was added in one portion. The reaction mixture was stirred at room temperature for 3.5 h, then was added dropwise to a solution of 6-azidohexan-1-amine (0.801 g, 5.64 mmol) in ethanol (4.0 mL) at 50 C After the reaction was complete (monitored by LCMS), the mixture was diluted with water (10 mL) and concentrated under a reduced pressure and filtered. The yellow solid was washed with water and dried under vacuum to be used in the next step without further purification (0.723 g, 39% over 3 steps).

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, 2972-52-3, 2,4-Dichloro-5-pyrimidinecarbonyl chloride.

Reference:
Patent; THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL; WANG, Xiaodong; ZHANG, Weihe; KIREEV, Dmitri; LIU, Jing; MCIVER, Andrew Louis; WO2014/85225; (2014); A1;,
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia