Zhang, Zengyu team published research in Journal of Organic Chemistry in 2020 | 4595-59-9

Formula: C4H3BrN2, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., 4595-59-9.

The systematic study of pyrimidines began in 1884 with Pinner, who synthesized derivatives by condensing ethyl acetoacetate with amidines. Pinner first proposed the name “pyrimidin” in 1885. 4595-59-9, formula is C4H3BrN2, Name is 5-Bromopyrimidine. The parent compound was first prepared by Gabriel and Colman in 1900, by conversion of barbituric acid to 2,4,6-trichloropyrimidine followed by reduction using zinc dust in hot water. Formula: C4H3BrN2.

Zhang, Zengyu;Huang, Shiqing;Huang, Linwei;Xu, Xingyu;Zhao, Hongyan;Yan, Xiaoyu research published 《 Synthesis of Mesoionic N-Heterocyclic Olefins and Catalytic Application for Hydroboration Reactions》, the research content is summarized as follows. Mesoionic N-heterocyclic olefins have been developed, which feature high ylidic character. These compounds have been used as efficient catalysts for hydroboration of imines, nitriles, and N-heteroarenes.

Formula: C4H3BrN2, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., 4595-59-9.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Zheng, Di-Zhong team published research in Organometallics in 2022 | 4595-59-9

4595-59-9, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., Recommanded Product: 5-Bromopyrimidine

The systematic study of pyrimidines began in 1884 with Pinner, who synthesized derivatives by condensing ethyl acetoacetate with amidines. Pinner first proposed the name “pyrimidin” in 1885. 4595-59-9, formula is C4H3BrN2, Name is 5-Bromopyrimidine. The parent compound was first prepared by Gabriel and Colman in 1900, by conversion of barbituric acid to 2,4,6-trichloropyrimidine followed by reduction using zinc dust in hot water. Recommanded Product: 5-Bromopyrimidine.

Zheng, Di-Zhong;Li, Dong-Hui;Liu, Huan;Shao, Youxiang;Ke, Zhuofeng;Liu, Feng-Shou research published 《 Bis(imino)acenaphthene (BIAN)-Supported N-Heterocyclic Carbene Palladium Complexes with Ancillary Ligands: Readily Activated Precatalysts for Direct C-H Arylation of Thiophenes》, the research content is summarized as follows. The authors report herein a highly efficient direct C-H arylation of thiophenes with (hetero)aryl bromides by bulky bis(imino)acenaphthene (BIAN)-supported N-heterocyclic carbene Pd complexes. The relation between the structure of Pd complexes with ancillary ligands and catalytic properties is discussed. Upon a low Pd loading of 0.01-0.05 mol %, the bulky Pd complex was successfully used to catalyze the cross-coupling of a variety of thiophenes with (hetero)aryl bromides under aerobic conditions. Also, it provides a practical and straightforward access to poly(3-hexylthiophenes) with high mol. weight and high HT value under aerobic reaction conditions. To access the mechanistic of the transformation, experiment study and DFT calculations on the direct arylation were performed, which supported the involvement of a Pd(0)/Pd(II) CMD process.

4595-59-9, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., Recommanded Product: 5-Bromopyrimidine

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Zhang, Dawei team published research in Chemistry – A European Journal in 2022 | 4595-59-9

Application of C4H3BrN2, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., 4595-59-9.

The systematic study of pyrimidines began in 1884 with Pinner, who synthesized derivatives by condensing ethyl acetoacetate with amidines. Pinner first proposed the name “pyrimidin” in 1885. 4595-59-9, formula is C4H3BrN2, Name is 5-Bromopyrimidine. The parent compound was first prepared by Gabriel and Colman in 1900, by conversion of barbituric acid to 2,4,6-trichloropyrimidine followed by reduction using zinc dust in hot water. Application of C4H3BrN2.

Zhang, Dawei;Gao, Xing;Min, Qiao-Qiao;Gu, Yucheng;Berthon, Guillaume;Zhang, Xingang research published 《 Coupling of Heteroaryl Halides with Chlorodifluoroacetamides and Chlorodifluoroacetate by Nickel Catalysis》, the research content is summarized as follows. A nickel-catalyzed cross-coupling of heteroaryl halides with chlorodifluoroacetamides and chlorodifluoroacetate was developed. The combination of NiCl2 DME with 4,4′-diNon-bpy, co-ligand PPh3, and additive LiCl renders the catalytic system efficient for the synthesis of medicinal interest heteroaryldifluoroacetamides. The application of the method leads to short and highly efficient synthesis of biol. active mols., providing a facile route for applications in medicinal chem. and agrochem.

Application of C4H3BrN2, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., 4595-59-9.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Zhang, Xuan team published research in Nature (London, United Kingdom) in 2021 | 4595-59-9

4595-59-9, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., Synthetic Route of 4595-59-9

The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives, 4595-59-9, formula is C4H3BrN2, Name is 5-Bromopyrimidine. including the nucleotides cytosine, thymine and uracil, thiamine (vitamin B1) and alloxan. Synthetic Route of 4595-59-9.

Zhang, Xuan;Nottingham, Kyle G.;Patel, Chirag;Alegre-Requena, Juan V.;Levy, Jeffrey N.;Paton, Robert S.;McNally, Andrew research published 《 Phosphorus-mediated sp2-sp3 couplings for C-H fluoroalkylation of azines》, the research content is summarized as follows. Fluoroalkyl groups profoundly affect the phys. properties of pharmaceuticals and influence almost all metrics associated with their pharmacokinetic and pharmacodynamic profile. Drug candidates increasingly contain trifluoromethyl (CF3) and difluoromethyl (CF2H) groups, and the same trend in agrochem. development shows that the effect of fluoroalkylation translates across human, insect and plant life. New fluoroalkylation reactions have undoubtedly stimulated this shift; however, methods that directly convert C-H bonds into C-CF2X groups (where X is F or H) in complex drug-like mols. are rare. Pyridines are the most common aromatic heterocycles in pharmaceuticals, but only one approach – via fluoroalkyl radicals – is viable for achieving pyridyl C-H fluoroalkylation in the elaborate structures encountered during drug development. Here we develop a set of bench-stable fluoroalkylphosphines that directly convert the C-H bonds in pyridine building blocks, drug-like fragments and pharmaceuticals into fluoroalkyl derivatives No preinstalled functional groups or directing groups are required. The reaction tolerates a variety of sterically and electronically distinct pyridines, and is exclusively selective for the 4-position in most cases. The reaction proceeds through initial formation of phosphonium salts followed by sp2-sp3 coupling of phosphorus ligands – an underdeveloped manifold for forming C-C bonds. Thus, e.g., treatment of 2-phenylpyridine with (fluoroalkyl)phosphine I, Tf2O and DBU afforded intermediate phosphonium salt (not isolated) which, upon treatment with TfOH, MeOH and water afforded II (89%).

4595-59-9, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., Synthetic Route of 4595-59-9

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Zhang, Yuan team published research in Journal of Organic Chemistry in 2020 | 4595-59-9

4595-59-9, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., COA of Formula: C4H3BrN2

Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. 4595-59-9, formula is C4H3BrN2, Name is 5-Bromopyrimidine. In nucleic acids, three types of nucleobases are pyrimidine derivatives: cytosine (C), thymine (T), and uracil (U). COA of Formula: C4H3BrN2.

Zhang, Yuan;Lee, Jack Chang Hung;Reese, Matthew R.;Boscoe, Brian P.;Humphrey, John M.;Helal, Christopher J. research published 《 5-Aryltetrazoles from Direct C-H Arylation with Aryl Bromides》, the research content is summarized as follows. A mild, direct C-H arylation of 1-substituted tetrazoles to 5-aryltetrazoles is developed using a Pd/Cu cocatalytic system with readily available aryl bromides. The methodol. avoids late-stage usage of azides and tolerates a wide range of functionalities.

4595-59-9, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., COA of Formula: C4H3BrN2

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Yedase, Girish Suresh team published research in Journal of Organic Chemistry in 2022 | 4595-59-9

Synthetic Route of 4595-59-9, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., 4595-59-9.

The systematic study of pyrimidines began in 1884 with Pinner, who synthesized derivatives by condensing ethyl acetoacetate with amidines. Pinner first proposed the name “pyrimidin” in 1885. 4595-59-9, formula is C4H3BrN2, Name is 5-Bromopyrimidine. The parent compound was first prepared by Gabriel and Colman in 1900, by conversion of barbituric acid to 2,4,6-trichloropyrimidine followed by reduction using zinc dust in hot water. Synthetic Route of 4595-59-9.

Yedase, Girish Suresh;Jha, Avishek Kumar;Yatham, Veera Reddy research published 《 Visible-Light Enabled C(sp3)-C(sp2) Cross-Electrophile Coupling via Synergistic Halogen-Atom Transfer (XAT) and Nickel Catalysis》, the research content is summarized as follows. The first visible-light-mediated cross-coupling of unactivated alkyl iodides with aryl bromides through synergistic halogen atom transfer (XAT) and nickel catalysis was reported. This simple protocol operated under mild reaction conditions and tolerates a variety of functional groups affording C(sp3)-C(sp2) cross-coupling products R1R2 [R1 = pyrimidin-5-yl, 4-CO2MeC6H4, 4-F3CC6H4, etc.; R2 = i-Pr, i-Bu, cyclohexyl, etc.] in good to moderate yields.

Synthetic Route of 4595-59-9, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., 4595-59-9.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Yin, Nian team published research in Journal of Hazardous Materials in 2022 | 4595-59-9

Synthetic Route of 4595-59-9, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., 4595-59-9.

Pyrimidine is a nitrogenous base similar to benzene (a six-membered ring) and includes cytosine, thymine, and uracil as bases used for DNA or RNA. 4595-59-9, formula is C4H3BrN2, Name is 5-Bromopyrimidine. Pyrimidine also found in many synthetic compounds such as barbiturates and the HIV drug, zidovudine. Synthetic Route of 4595-59-9.

Yin, Nian;Chen, Haoyun;Yuan, Xingzhong;Zhang, Yi;Zhang, Mingjuan;Guo, Jiayin;Zhang, Yuanyuan;Qiao, Lu;Liu, Mengsi;Song, Kexin research published 《 Highly efficient photocatalytic degradation of norfloxacin via Bi2Sn2O7/PDIH Z-scheme heterojunction: Influence and mechanism》, the research content is summarized as follows. The severe pollution caused by antibiotics has prompted considerable concerns in recent decades. In this study, the Bi2Sn2O7/PDIH Z-scheme heterojunction photocatalyst was synthesized and highly photocatalytic activity on norfloxacin was obtained. The degradation of norfloxacin reached 98.71% in 90 min under visible light. The apparent rate constant of norfloxacin (0.4 903 min-1) was 3.65 and 20 times that of PDIH and the Bi2Sn2O7. Meanwhile, XPS, electrochem., Photoluminescence spectroscopy and ESR results showed that Z-scheme charge-transfer process facilitated the spatial carrier separation and preserve redox capability. Furthermore, the degradation intermediates of norfloxacin and their toxicities were evaluated. Finally, in the view of the survey about the impact of different water matrixes, it was found that the Bi2Sn2O7/PDIH maintained high efficiency in raw natural water. This work enriched inorganic/organic heterojunction engineering for PDIH, and provided the enormous potential for combining the Bi2Sn2O7 with PDIH to address the antibiotic pollution issues in the actual water treatment.

Synthetic Route of 4595-59-9, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., 4595-59-9.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Yu. Baranov, Andrey team published research in Polyhedron in 2022 | 4595-59-9

4595-59-9, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., Application In Synthesis of 4595-59-9

Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. One of the three diazines (six-membered heterocyclics with two nitrogen atoms in the ring), it has the nitrogen atoms at positions 1 and 3 in the ring. 4595-59-9, formula is C4H3BrN2, Name is 5-Bromopyrimidine. The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives, including the nucleotides cytosine, thymine and uracil, thiamine (vitamin B1) and alloxan. Application In Synthesis of 4595-59-9.

Yu. Baranov, Andrey;Ryadun, Alexey A.;Sukhikh, Taisiya S.;Artem’ev, Alexander V. research published 《 Luminescent Cu(I) and Au(I) complexes based on diphenyl(5-pyrimidyl)phosphine》, the research content is summarized as follows. Diphenyl(5-pyrimidyl)phosphine (L) has been synthesized and its coordination abilities toward Cu(I) and Au(I) have been surveyed. The reaction of L with Cu(MeCN)4BF4 or CuI produces 1D polymers [Cu(L)(MeCN)2]BF4 and [Cu2I2(L)2], or 2D grids [Cu2I2(L)2], wherein P,N-bridging pattern of the ligand always appears. Treatment of L with 1 or 3 equivalent of Au(tht)Cl affords linear [Au(L)Cl] or trigonal pyramidal [Au(L)3Cl] complexes, in which the ligand is P-coordinated to Au(I). At 300 K, 1D polymers [Cu(L)(MeCN)2]BF4 and [Cu2I2(L)2] exhibit weak yellow and moderate green emission, resp., which strongly enhances upon colling to 77 K. Complex [Au(L)3Cl] at 300 K emits strong sky-blue phosphorescence (λem = 492 nm) with the quantum yield of 50%.

4595-59-9, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., Application In Synthesis of 4595-59-9

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Xu, Chanchan team published research in Inorganica Chimica Acta in 2020 | 4595-59-9

4595-59-9, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., Application In Synthesis of 4595-59-9

Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. One of the three diazines (six-membered heterocyclics with two nitrogen atoms in the ring), it has the nitrogen atoms at positions 1 and 3 in the ring. 4595-59-9, formula is C4H3BrN2, Name is 5-Bromopyrimidine. The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives, including the nucleotides cytosine, thymine and uracil, thiamine (vitamin B1) and alloxan. Application In Synthesis of 4595-59-9.

Xu, Chanchan;Li, Yuzhe;Lv, Le;Lin, Fang;Lin, Feng;Zhang, Zhijuan;Luo, Chaoyun;Luo, Dawei;Liu, Wei research published 《 Synthesis, characterization, luminescence properties of copper(I) bromide based coordination compounds》, the research content is summarized as follows. Two new copper bromide based coordination compounds 0D-Cu2Br2(3,5-dimethyl-pyridine)4 (1) and 1D-Cu2Br2(5-bromo-pyrimidine)2 (2) were synthesized and structurally characterized. X-ray diffraction analyses reveal that the inorganic module of both compounds is Cu2Br2 rhomboid dimer coordinated by the organic ligands. Compound 1 is a zero-dimensional (0D) mol. complex while compound 2 is one-dimensional (1D) extended structure. Photoluminescence measurement results show that 1 emits green photoluminescence peaked at 520 nm, with an IQY of 82.4%. Compound 2 emits red photoluminescence peaked at 630 nm, with an IQY of 2.1%. Both compounds exhibit potential as rare-earth metal free lighting phosphor alternatives.

4595-59-9, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., Application In Synthesis of 4595-59-9

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Xu, Lei team published research in Nature Catalysis in 2021 | 4595-59-9

4595-59-9, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., Application In Synthesis of 4595-59-9

The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives, 4595-59-9, formula is C4H3BrN2, Name is 5-Bromopyrimidine. including the nucleotides cytosine, thymine and uracil, thiamine (vitamin B1) and alloxan. Application In Synthesis of 4595-59-9.

Xu, Lei;Liu, Fu-Yue;Zhang, Qi;Chang, Wei-Jun;Liu, Zhong-Lin;Lv, Ying;Yu, Hai-Zhu;Xu, Jun;Dai, Jian-Jun;Xu, Hua-Jian research published 《 The amine-catalysed Suzuki-Miyaura-type coupling of aryl halides and arylboronic acids》, the research content is summarized as follows. A robust and chemoselective organocatalytic Suzuki-Miyaura-type coupling of aryl halides viz. Me 2-(4-bromophenyl)propanoate, Me 2-(4-chlorophenyl)propanoate, 5-bromopyrimidine, etc. with arylboronic acids viz. phenylboronic acid, naphthalen-2-ylboronic acid, furan-3-ylboronic acid, etc. catalyzed by amines, e.g. 2-methyl-N1,N3-di-o-tolylbenzene-1,3-diamine was reported. The utility and scope of this reaction were demonstrated by the synthesis of several com. relevant small mols. viz. Me 2-([1,1′-biphenyl]-4-yl)propanoate, Me 2-(4-(naphthalen-2-yl) phenyl)propanoate, 5-(furan-3-yl)pyrimidine, etc. and a selection of derivatives of pharmaceutical drugs e.g., Boscalid.

4595-59-9, 5-Bromopyrimidine is a reactive intermediate that is used in the synthesis of 4-methoxyphenylboronic acid. 5-Bromopyrimidine has been shown to be nucleophilic, reacting with β-amino acids under basic conditions to form the corresponding 2-bromo amide. It also undergoes cross-coupling reactions with halides and can be used as a building block for other organic compounds. 5-Bromopyrimidine has optical properties that are characteristic of aromatic molecules, including strong absorption bands in the ultraviolet region and visible light region.
5-Bromopyrimidine undergoes direct metallation with lithuium diisopropylamide to yield 4-lithio-5-bromopyrimidine., Application In Synthesis of 4595-59-9

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia