New learning discoveries about 6-Bromo-4-chlorothieno[2,3-d]pyrimidine

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about 56844-12-3, 6-Bromo-4-chlorothieno[2,3-d]pyrimidine.

Synthetic Route of 56844-12-3, The major producers of chemicals have been the Europe, Japan and China. Due to the growing call for a cleaner, greener environment, people will have to find innovative ways to maintain their relevance. Here is a compound 56844-12-3, name is 6-Bromo-4-chlorothieno[2,3-d]pyrimidine. This compound has unique chemical properties. The synthetic route is as follows.

General procedure: 6-Bromo-4-chlorothieno[2,3-d]pyrimidine(5a) (200 mg, 0.802 mmol) was mixed with 1-phenylethanol (2a) (118 mg, 0.962 mmol), Cs2CO3( 313 mg, 0.962 mmol) and acetonitrile (2 mL). The reaction was then stirredunder nitrogen atmosphere at reflux and followed by GC. The mixture was cooledto rt, diluted with EtOAc (40 mL), washed with sat. aq. KHCO3 (20mL), water (2×20 mL) and brine (30 mL). The combined organic fractions weredried over Na2SO4 and concentrated in vacuum. Crudeproduct was absorbed onto Celite 545 and purified by silica gel columnchromatography (n-pentane/EtOAc,6/1). This gave 245 mg (0.730 mmol, 91%) of 6a as an off-white solid.

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about 56844-12-3, 6-Bromo-4-chlorothieno[2,3-d]pyrimidine.

Reference:
Article; Han, Jin; Sundby, Eirik; Hoff, Bage H.; Journal of Fluorine Chemistry; vol. 153; (2013); p. 82 – 88;,
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

The important role of 56844-12-3

At the same time, in my other blogs, there are other synthetic methods of this type of compound,56844-12-3, 6-Bromo-4-chlorothieno[2,3-d]pyrimidine, and friends who are interested can also refer to it.

Adding a certain compound to certain chemical reactions, such as: 56844-12-3, 6-Bromo-4-chlorothieno[2,3-d]pyrimidine, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound, category: pyrimidines, blongs to pyrimidines compound. category: pyrimidines

General procedure: Compound 1 (1.00 g, 4.01 mmol) was mixed with the benzylamine (12.03 mmol) and 1-butanol (3.5 mL) and agitated at 145 C for 18-24 h. Then the mixture was cooled to rt, diluted with water (50 mL) and diethyl ether (150 mL) or EtOAc (150 mL). After phase separation, the water phase was extracted with more diethyl ether (2 × 50 mL) or EtOAc (2 × 50 mL). The combined organic phases were washed with saturated aq NaCl solution (50 mL), dried over anhydrous Na2SO4, filtered and concentrated in vacuo, before the crude oil was dried under reduced pressure to constant weight to remove excess benzylamine. The compounds were purified by silica-gel column chromatography or crystallized as specified for each individual compound

At the same time, in my other blogs, there are other synthetic methods of this type of compound,56844-12-3, 6-Bromo-4-chlorothieno[2,3-d]pyrimidine, and friends who are interested can also refer to it.

Reference:
Article; Bugge, Steffen; Kaspersen, Svein Jacob; Larsen, Synne; Nonstad, Unni; Bj°rk°y, Geir; Sundby, Eirik; Hoff, Bard Helge; European Journal of Medicinal Chemistry; vol. 75; (2014); p. 354 – 374;,
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Extracurricular laboratory: Synthetic route of 6-Bromo-4-chlorothieno[2,3-d]pyrimidine

The synthetic route of 56844-12-3 has been constantly updated, and we look forward to future research findings.

Application of 56844-12-3 , The common heterocyclic compound, 56844-12-3, name is 6-Bromo-4-chlorothieno[2,3-d]pyrimidine, molecular formula is C6H2BrClN2S, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

General procedure: 6-Bromo-4-chlorothieno[2,3-d]pyrimidine(5a) (200 mg, 0.802 mmol) was mixed with 1-phenylethanol (2a) (118 mg, 0.962 mmol), Cs2CO3( 313 mg, 0.962 mmol) and acetonitrile (2 mL). The reaction was then stirredunder nitrogen atmosphere at reflux and followed by GC. The mixture was cooledto rt, diluted with EtOAc (40 mL), washed with sat. aq. KHCO3 (20mL), water (2×20 mL) and brine (30 mL). The combined organic fractions weredried over Na2SO4 and concentrated in vacuum. Crudeproduct was absorbed onto Celite 545 and purified by silica gel columnchromatography (n-pentane/EtOAc,6/1). This gave 245 mg (0.730 mmol, 91%) of 6a as an off-white solid.

The synthetic route of 56844-12-3 has been constantly updated, and we look forward to future research findings.

Reference:
Article; Han, Jin; Sundby, Eirik; Hoff, Bage H.; Journal of Fluorine Chemistry; vol. 153; (2013); p. 82 – 88;,
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Simple exploration of 56844-12-3

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, 56844-12-3, 6-Bromo-4-chlorothieno[2,3-d]pyrimidine.

Each compound has different characteristics, and only by selecting the characteristics of the compound suitable for a specific situation can the compound be applied on a large scale. 56844-12-3, name is 6-Bromo-4-chlorothieno[2,3-d]pyrimidine. This compound has unique chemical properties. The synthetic route is as follows. category: pyrimidines

EXAMPLE 20 6-Bromo-N-(2,5-dimethoxyphenyl)thieno[3,2-d]pyrimidin-4-amine To a mixture of 6-bromo-4-chlorothieno[2,3-d]pyrimidine (96 mg, 0.38 mmol) and 2,5-dimethoxybenzenamine (65 mg, 0.42 mmol) in 2.5 mL of isopropanol was added 2 drops of concentrated HCl and the mixture was heated at 75 C. for 3 h. The reaction mixture was cooled to room temperature and diluted with 25 mL of ethyl acetate, and washed with saturated NaHCO3, dried over anhydrous Na2SO4, filtered and concentrated. The crude was purified by column chromatography (40% ethyl acetate/hexane) to give the title compound (116 mg, 0.32 mmol, 84%). 1H NMR (CDCl3) 8.70 (s, 1H), 8.07 (d, 1H, J=3.0), 7.45 (s, 1H), 7.18 (s, 1H, broad), 6.87 (d, 1H, J=8.7), 6.67 (dd, 1H, J=9.0, 3.0), 3.88 (s, 3H), 3.83 (s, 3H).

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, 56844-12-3, 6-Bromo-4-chlorothieno[2,3-d]pyrimidine.

Reference:
Patent; Cytovia, Inc.; US2007/99877; (2007); A1;,
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Introduction of a new synthetic route about Related Products of 56844-12-3

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about 56844-12-3, 6-Bromo-4-chlorothieno[2,3-d]pyrimidine.

Related Products of 56844-12-3, As we all know, there are many different methods for the synthesis of a compound, and people can choose the synthesis method that suits their own laboratory according to the actual situation. 56844-12-3, name is 6-Bromo-4-chlorothieno[2,3-d]pyrimidine, molecular formula is C6H2BrClN2S, The compound is widely used in many fields, so it is necessary to find a new synthetic route. The downstream synthesis method of this compound is introduced below.

General procedure: Compound 1 (1.00 g, 4.01 mmol) was mixed with the benzylamine (12.03 mmol) and 1-butanol (3.5 mL) and agitated at 145 C for 18-24 h. Then the mixture was cooled to rt, diluted with water (50 mL) and diethyl ether (150 mL) or EtOAc (150 mL). After phase separation, the water phase was extracted with more diethyl ether (2 ¡Á 50 mL) or EtOAc (2 ¡Á 50 mL). The combined organic phases were washed with saturated aq NaCl solution (50 mL), dried over anhydrous Na2SO4, filtered and concentrated in vacuo, before the crude oil was dried under reduced pressure to constant weight to remove excess benzylamine. The compounds were purified by silica-gel column chromatography or crystallized as specified for each individual compound

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about 56844-12-3, 6-Bromo-4-chlorothieno[2,3-d]pyrimidine.

Reference:
Article; Bugge, Steffen; Kaspersen, Svein Jacob; Larsen, Synne; Nonstad, Unni; Bj¡ãrk¡ãy, Geir; Sundby, Eirik; Hoff, Bard Helge; European Journal of Medicinal Chemistry; vol. 75; (2014); p. 354 – 374;,
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia