Pyrimidine is a nitrogenous base similar to benzene (a six-membered ring) and includes cytosine, thymine, and uracil as bases used for DNA or RNA. 65-86-1, formula is C5H4N2O4, Name is 2,6-Dioxo-1,2,3,6-tetrahydropyrimidine-4-carboxylic acid. Pyrimidine also found in many synthetic compounds such as barbiturates and the HIV drug, zidovudine. Quality Control of 65-86-1.
Wang, Qiongye;Guan, Kelei;Lv, Yuanjun;Zhang, Yingxuan;Yu, Zujiang;Kan, Quancheng research published 《 Disturbance of hepatocyte growth and metabolism in a hyperammonemia microenvironment》, the research content is summarized as follows. We found through previous research that hyperammonemia can cause secondary liver damage. However, whether hepatocytes are target cells of ammonia toxicity and whether hyperammonemia affects hepatocyte metabolism remain unknown. The purpose of the current study is to examine whether the hepatocyte is a specific target cell of ammonia toxicity and whether hyperammonemia can interfere with hepatocyte metabolism Cell viability and apoptosis were analyzed in primary hepatocytes and other cells that had been exposed to ammonium chloride. Western blotting was adopted to examine the expression of proteins related to ammonia transport. We also established a metabolomics method based on gas chromatog.-mass spectrometry to understand the characteristics of the hepatocyte metabolic spectrum in a hyperammonemia microenvironment, to screen and identify differential metabolites, and to determine the differential metabolic pathway. Different technologies were used to verify the differential metabolic pathways. Hepatocytes are target cells of ammonia toxicity. The mechanism is related to the ammonia transporter. Hyperammonemia interferes with hepatocyte metabolism, which leads to TCA cycle, urea cycle, and RNA synthesis disorder. This study demonstrates that hepatocyte growth and metabolism are disturbed in a hyperammonemia microenvironment, which further deteriorates hepatocyte function.
Quality Control of 65-86-1, Orotic acid anhydrous is a hydrogen bonding interaction that can be found in biological systems. It plays a role in the physiological effects of orotic acid, which is a metabolite of uridine and an intermediate in the synthesis of pyrimidine nucleotides. Orotic acid has antimicrobial properties and has been shown to inhibit enzyme activities involved in energy metabolism, such as polymerase chain reaction (PCR) and adenosine triphosphate (ATP) synthase. Orotic acid also inhibits the growth of bacteria, fungi, and parasites. Orotic acid anhydrous is used for treating myocardial infarcts or brain functions. The untreated group was given no treatment at all.
Orotic acid, also known as orotate or orotsaeure, belongs to the class of organic compounds known as pyrimidinecarboxylic acids. These are pyrimidines with a structure containing a carboxyl group attached to the pyrimidine ring. Orotic acid exists as a solid, slightly soluble (in water), and a moderately acidic compound (based on its pKa). Orotic acid has been found in human liver and pancreas tissues, and has also been primarily detected in saliva, feces, urine, and blood. Within the cell, orotic acid is primarily located in the cytoplasm and mitochondria. Orotic acid exists in all eukaryotes, ranging from yeast to humans. Orotic acid participates in a number of enzymatic reactions. In particular, Orotic acid can be biosynthesized from L-dihydroorotic acid and quinone; which is mediated by the enzyme dihydroorotate dehydrogenase (quinone), mitochondrial. In addition, Orotic acid and phosphoribosyl pyrophosphate can be converted into orotidylic acid through its interaction with the enzyme uridine monophosphate synthetase isoform a. In humans, orotic acid is involved in the pyrimidine metabolism pathway. Orotic acid is also involved in several metabolic disorders, some of which include the mngie (mitochondrial neurogastrointestinal encephalopathy) pathway, dihydropyrimidinase deficiency, UMP synthase deficiency (orotic aciduria), and Beta ureidopropionase deficiency. Outside of the human body, orotic acid can be found in a number of food items such as green vegetables, alaska blueberry, chickpea, and colorado pinyon. This makes orotic acid a potential biomarker for the consumption of these food products. Orotic acid is a potentially toxic compound. Orotic acid has been found to be associated with several diseases known as phosphoenolpyruvate carboxykinase deficiency 1, cytosolic and hyperornithinemia-hyperammonemia-homocitrullinuria; orotic acid has also been linked to several inborn metabolic disorders including n-acetylglutamate synthetase deficiency, lysinuric protein intolerance, and ornithine transcarbamylase deficiency.
Orotic acid appears as white crystals or crystalline powder.
Orotic acid is a pyrimidinemonocarboxylic acid that is uracil bearing a carboxy substituent at position C-6. It has a role as a metabolite, an Escherichia coli metabolite and a mouse metabolite. It derives from a uracil. It is a conjugate acid of an orotate., 65-86-1.
Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia