Adding a certain compound to certain chemical reactions, such as: 767-15-7, 2-Amino-4,6-dimethylpyrimidine, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound, HPLC of Formula: C6H9N3, blongs to pyrimidines compound. HPLC of Formula: C6H9N3
General procedure: For the synthesis of 2, the solution of sulfurisocyanatidic chloride (7.2mmol) in 20mL toluene was added to the solution of 1 (6.0mmol) in 20mL toluene dropwise at room temperature. The reactant was heated to 140C and then the reaction proceeded for 18h under reflux. Subsequently, the mixture was cooled down to room temperature and remaining sulfurisocyanatidic chloride was removed under reduced pressure, together with the solvent. Without further purification, the resulting yellow oil 2 was dissolved in 10mL anhydrous acetonitrile and after that it was added slowly to 5mmol of 3, which was also dissolved in 10mL anhydrous acetonitrile beforehead in ice bath. After stirring for 24hat room temperature, acetonitrile was removed under reduced pressure and saturated sodium bicarbonate was added to product 4. Product 5 precipitated easily and it was further purified by recrystallization from petroleum ether/acetone in 1:1 ratio in high yields. 15% hydrochloric acid was added to aqueous solution of 5 under stirring and corresponding acidified product 4 precipitated out easily in high yields.
At the same time, in my other blogs, there are other synthetic methods of this type of compound,767-15-7, 2-Amino-4,6-dimethylpyrimidine, and friends who are interested can also refer to it.
Reference:
Article; Wu, Ren-Jun; Ren, Tongtong; Gao, Jie-Yu; Wang, Li; Yu, Qilin; Yao, Zheng; Song, Guo-Qing; Ruan, Wei-Bin; Niu, Cong-Wei; Song, Fu-Hang; Zhang, Li-Xin; Li, Mingchun; Wang, Jian-Guo; European Journal of Medicinal Chemistry; vol. 162; (2019); p. 348 – 363;,
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia