Adding a certain compound to certain chemical reactions, such as: 941685-26-3, 4-Chloro-7-((2-(trimethylsilyl)ethoxy)methyl)-7H-pyrrolo[2,3-d]pyrimidine, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound, Safety of 4-Chloro-7-((2-(trimethylsilyl)ethoxy)methyl)-7H-pyrrolo[2,3-d]pyrimidine, blongs to pyrimidines compound. Safety of 4-Chloro-7-((2-(trimethylsilyl)ethoxy)methyl)-7H-pyrrolo[2,3-d]pyrimidine
A 100 mL round bottom flask was charged with 4-chloro-7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidine (1.00 g, 3.52 mmol), 1-butanol (25.0 mL), [1-(triisopropylsilyl)-1H-pyrrol-3-yl]boronic acid (1.41 g, 5.28 mmol), water (25.0 mL) and potassium carbonate (1.27 g, 8.8 mmol). This solution was degased 4 times, filling with nitrogen each time. Tetrakis(triphenylphosphine)-palladium(0) (0.41 g, 0.35 mmol) was added and the mixture was degased 4 times, filling with nitrogen each time. The reaction was stirred overnight at 100 C. and cooled to room temperature. The mixture was filtered through a bed of celite and the celite was rinsed with ethyl acetate (42 mL). The filtrate was combined and the organic layer was separated. The aqueous layer was extracted with ethyl acetate. The organic extracts were combined and concentrated under vacuum with a bath temperature of 30-70 C. to give the title compound 4-(1H-pyrrol-3-yl)-7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidine. Yield: 83%; LC-MS: 315.2 (M+H)+.
The synthetic route of 941685-26-3 has been constantly updated, and we look forward to future research findings.
Reference:
Patent; Huang, Taisheng; Xue, Chu-Biao; Wang, Anlai; Kong, Ling Quan; Ye, Hai Fen; Yao, Wenqing; Rodgers, James D.; Shepard, Stacey; Wang, Haisheng; Shao, Lixin; Li, Hui-Yin; Li, Qun; US2011/224190; (2011); A1;,
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia