Sources of common compounds: 99420-75-4

The synthetic route of 99420-75-4 has been constantly updated, and we look forward to future research findings.

In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. 99420-75-4, name is 5-Methylpyrimidine-2-carboxylic acid, the common compound, a new synthetic route is introduced below. COA of Formula: C6H6N2O2

To a solution of 5-methylpyrimidine-2-carboxylic acid (1 g, 7.24 mmol) in DMF (72.4 mL) was added 5-methylpyrimidine-2-carboxylic acid (1 g, 7.24mmol), and N,O- dimethylhydroxylamine hydrochloride (0.777 g, 7.96 mmol). The mixture was cooled to 0oC and 1-propanephosphonic acid cyclic anhydride (50 wt. % solution in EtOAc, 9.21 mL, 14.48 mmol) was added droppwise. The mixture was allowed to warm to RT overnight. LCMS indicated complete conversion to product. The mixture was then diluted with water, extracted with CHCl3:IPA (3:1), and washed with brine and NaHCO3. The mixture was dried over Na2SO4, concentrated in vacuo, and purified by silica gel chromatography (0-100% heptanes:EtOAc) to yield N-methoxy-N,5-dimethylpyrimidine- 2-carboxamide (0.7 g, 3.86 mmol, 53.4 % yield), Example 142.1.1H NMR (500 MHz, CDCl3) delta 8.61 – 8.69 (m, 2 H) 3.61 – 3.79 (m, 3 H) 3.27 – 3.47 (m, 3 H) 2.34 – 2.45 (m, 3 H). LCMS-ESI (pos.) m/z: 182.2 (M+H)+.

The synthetic route of 99420-75-4 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; AMGEN INC.; CHEN, Ning; CHEN, Xiaoqi; CHEN, Yinhong; CHENG, Alan C.; CONNORS, Richard V.; DEIGNAN, Jeffrey; DRANSFIELD, Paul John; DU, Xiaohui; FU, Zice; HARVEY, James S.; HEATH, Julie Anne; HEUMANN, Lars V.; HORNE, Daniel B.; HOUZE, Jonathan; KALLER, Matthew R.; KAYSER, Frank; KHAKOO, Aarif Yusuf; KOPECKY, David J.; LAI, Su-Jen; MA, Zhihua; MEDINA, Julio C.; MIHALIC, Jeffrey T.; NISHIMURA, Nobuko; OLSON, Steven H.; PATTAROPONG, Vatee; SWAMINATH, Gayathri; WANG, Xiaodong; WANSKA, Malgorzata; YANG, Kevin; YEH, Wen-Chen; (700 pag.)WO2018/97945; (2018); A1;,
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Simple exploration of 99420-75-4

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,99420-75-4, its application will become more common.

Synthetic Route of 99420-75-4 ,Some common heterocyclic compound, 99420-75-4, molecular formula is C6H6N2O2, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

To a solution of 5-methylpyrimidine-2-carboxylic acid (0.03 g, 0.22 mmol, 1 eq) and (S)-1-(pyrrolo[1,2-a]pyrazin-1-yl)pyrrolidin-3-amine (0.060 g, 0.22 mmol, 1 eq) in 1 mL of DMSO was added triethylamine (0.12 mL, 0.86 mmol, 4 eq) and HATU (0.09 g, 0.24 mmol, 1.1 eq). After stirring for 1 h at room temperature, the mixture was concentrated and purified by HPLC to afford (S)-5-methyl-N-(1-(pyrrolo[1,2-a]pyrazin-1-yl)pyrrolidin-3-yl)pyrimidine-2-carboxamide (0.029 g, 0.09 mmol, 41%). 1H NMR (400 MHz, CD3OD) delta 8.75 (s, 2H), 7.76 (s, 1H), 7.71 (d, J=5.5 Hz, 1H), 7.54 (s, 1H), 6.91 (s, 1H), 6.85 (d, J=5.8 Hz, 1H), 5.00-3.60 (br, 5H), 2.65-2.30 (br, 2H), 2.40 (s, 3H); MS: (ES) m/z calculated for C17H18N6O [M+H]+323.2. found 323.

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,99420-75-4, its application will become more common.

Reference:
Patent; ChemoCentryx, Inc.; Fan, Junfa; Krasinski, Antoni; Lange, Christopher W.; Lui, Rebecca M.; McMahon, Jeffrey P.; Powers, Jay P.; Zeng, Yibin; Zhang, Penglie; US2014/154179; (2014); A1;,
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

A new synthetic route of 99420-75-4

With the rapid development of chemical substances, we look forward to future research findings about 99420-75-4.

As we all know, there are many different methods for the synthesis of a compound, and people can choose the synthesis method that suits their own laboratory according to the actual situation. 99420-75-4, name is 5-Methylpyrimidine-2-carboxylic acid, molecular formula is C6H6N2O2, The compound is widely used in many fields, so it is necessary to find a new synthetic route. The downstream synthesis method of this compound is introduced below. Recommanded Product: 99420-75-4

To a solution of 5-methylpyrimidine-2-carboxylic acid (102 mg, 0.742 mmol) and diisopropylethylamine (288 mg, 2.226 mmol) in tetrahydrofuran (4 ml_) at 20 C was added 1 -[b/s(dimethylamino)methylene]- 7/-/-1 ,2,3-triazolo[4,5-b]pyridinium 3-oxid hexafluorophosphate (423 mg, 1 .1 13 mmol). The reaction mixture was stirred for 20 minutes before a solution of 5-(3-fluorobenzyl)pyridin-2-amine (150 mg, 0.742 mmol) in tetrahydrofuran (1 .0 ml_) was added. The reaction solution was heated to 90 C and stirred for 1 h. The volatiles were removed under reduced pressure and the residue was added to a mixture of dichloromethane (50 ml_) and water (50 ml_). The organic layer was collected, dried over sodium sulfate, filtered and concentrated. The crude sample was dissolved in minimal A/,A/-dimethylformamide and purified by prep-HPLC (Boston C18 21 *250 mm 10 pm column. The mobile phase was acetonitrile/10 mM ammonium acetate aqueous solution) to give A/-(5-(3-fluorobenzyl)pyridin-2-yl)-5-methylpyrimidine-2-carboxamide (150 mg, 0.47 mmol, 63%) as a white solid. 1 H NMR (400 MHz, Dimethylsulfoxide-c/6) d 10.44 (s, 1 H), 8.90 (s, 2H), 8.34 (s, 1 H), 8.19 (d, J = 8.0 Hz, 1 H), 7.79 (q, J = 2.6 Hz, 1 H), 7.34 (q, J = 2.6 Hz, 1 H), 7.01 -7.14 (m, 3H), 3.99 (s, 2H), 2.40 (s, 3H); LCMS (ESI) m/z: 323.0 [M+H]+.

With the rapid development of chemical substances, we look forward to future research findings about 99420-75-4.

Reference:
Patent; YUMANITY THERAPEUTICS, INC.; LE BOURDONNEC, Bertrand; LUCAS, Matthew; OZBOYA, Kerem; PANDYA, Bhaumik; TARDIFF, Daniel; TIVITMAHAISOON, Parcharee; WRONA, Iwona; (475 pag.)WO2019/183587; (2019); A1;,
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Some scientific research about 99420-75-4

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about 99420-75-4, 5-Methylpyrimidine-2-carboxylic acid.

Reference of 99420-75-4, As we all know, there are many different methods for the synthesis of a compound, and people can choose the synthesis method that suits their own laboratory according to the actual situation. 99420-75-4, name is 5-Methylpyrimidine-2-carboxylic acid, molecular formula is C6H6N2O2, The compound is widely used in many fields, so it is necessary to find a new synthetic route. The downstream synthesis method of this compound is introduced below.

N-Methoxy-N,5-dimethylpyrimidine-2-carboxamide, Example 13.7 To a solution of 5-methylpyrimidine-2-carboxylic acid (1 g, 7.24 mmol) in DMF (72.4 ml) was added 5-methylpyrimidine-2-carboxylic acid (1 g, 7.24 mmol), and N,O-dimethyl hydroxylamine hydrochloride (0.777 g, 7.96 mmol). The mixture was cooled to 0 C. and 1-propanephosphonic acid cyclic anhydride, 50 wt. % solution in EtOAc (9.21 ml, 14.48 mmol) was added droppwise. The mixture was allowed to warm to RT overnight. LCMS indicated complete conversion to product. The mixture was diluted with water, extracted with CHCl3:IPA (3:1) and washed with brine and NaHCO3. The mixture was dried over Na2SO4, concentrated in vacuo and purified by silica gel chromatography (0-100% heptanes:EtOAc) to yield N-methoxy-N,5-dimethylpyrimidine-2-carboxamide (0.7 g, 3.86 mmol, 53.4% yield). 1H NMR (500 MHz, CDCl3) delta 8.61-8.69 (m, 2H) 3.61-3.79 (m, 3H) 3.27-3.47 (m, 3H) 2.34-2.45 (m, 3H). LCMS-ESI (pos) m/z: 182.2 (M+H)+.

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about 99420-75-4, 5-Methylpyrimidine-2-carboxylic acid.

Reference:
Patent; AMGEN INC.; CHEN, Xiaoqi; CHEN, Yinhong; CHENG, Alan C.; CONNORS, Richard V.; DEBENEDETTO, Mikkel V.; DRANSFIELD, Paul John; FU, Zice; HARVEY, James S.; HEATH, Julie Anne; HEDLEY, Simon J.; HOUZE, Jonathan; JUDD, Ted C.; KHAKOO, Aarif Yusuf; KOPECKY, David John; LAI, Su-Jen; MA, Zhihua; NISHIMURA, Nobuko; OLSON, Steven H.; PATTAROPONG, Vatee; SWAMINATH, Gayathri; WANG, Xiaodong; YEH, Wen-Chen; (415 pag.)US2017/320860; (2017); A1;,
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

A new synthetic route of 99420-75-4

The synthetic route of 99420-75-4 has been constantly updated, and we look forward to future research findings.

Adding a certain compound to certain chemical reactions, such as: 99420-75-4, 5-Methylpyrimidine-2-carboxylic acid, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound, category: pyrimidines, blongs to pyrimidines compound. category: pyrimidines

To a solution of 5-methylpyrimidine-2-carboxylic acid (1 g, 7.24 mmol) in DMF(72.4 mL) was added 5-methylpyrimidine-2-carboxylic acid (1 g, 7.24mmol), and N,Odimethylhydroxylaminehydrochloride (0.777 g, 7.96 mmol). The mixture was cooled to0 C and 1-propanephosphonic acid cyclic anhydride, 50 wt.% solution in EtOAc (9.21mL, 14.48 mmol) was added dropwise. The mixture was allowed to warm toRTovernight. LCMS indicated complete conversion to product. The mixture was dilutedwith water, extracted with CHCb:IPA (3:1) and washed with brine and NaHC03. Themixture was then dried over Na2S04, concentrated in vacuo and purified by silica gelchromatography (0-100% heptanes:EtOAc) to yield Example 209.11 (0.7 g, 3.86 mmol,53.4% yield). 1H NMR (500 MHz, CDCb) o 8.61- 8.69 (m, 2 H) 3.61 -3.79 (m, 3 H)3.27- 3.47 (m, 3 H) 2.34- 2.45 (m, 3 H). LCMS-ESI (pos) m/z: 182.2 (M+Ht.

The synthetic route of 99420-75-4 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; AMGEN INC.; CHEN, Yinhong; DRANSFIELD, Paul John; HARVEY, James S.; HEATH, Julie Anne; HOUZE, Jonathan; KHAKOO, Aarif Yusuf; KOPECKY, David J.; LAI, Su-Jen; MA, Zhihua; NISHIMURA, Nobuko; PATTAROPONG, Vatee; SWAMINATH, Gayathri; YEH, Wen-Chen; RAMSDEN, Philip Dean; (434 pag.)WO2018/93577; (2018); A1;,
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Extended knowledge of 5-Methylpyrimidine-2-carboxylic acid

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,99420-75-4, its application will become more common.

Synthetic Route of 99420-75-4, In the chemical reaction process,reaction time,type of solvent,can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product.An updated downstream synthesis route of 99420-75-4 as follows.

To a solution of methanol (50 mL) was added SOCl2 (5.17 g, 43.5 mmol, 3.00 equiv) dropwise at 0 C. The resulting solution was stirred for 0.5 h at 25 C. This was followed by the addition of 5-methylpyrimidine-2-carboxylic acid [Example 9, Step 1] (2 g, 14.5 mmol, 1.00 equiv). The resulting solution was stirred for 1 h at 65 C. The resulting mixture was concentrated under vacuum to remove methanol and SOCl2. The resulting solution was diluted with H2O (30 mL). The resulting solution was extracted with ethyl acetate (3×30 mL). The organic layers were dried over anhydrous sodium sulfate and concentrated under vacuum to afford 2 g (90.7%) of methyl 5-methylpyrimidine-2-carboxylate as a yellow solid. LC-MS: m/z=153 [M+H]+.

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,99420-75-4, its application will become more common.

Reference:
Patent; Auspex Pharmaceuticals, Inc.; ZHANG, Chengzhi; (94 pag.)US2018/79742; (2018); A1;,
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Introduction of a new synthetic route about 99420-75-4

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about 99420-75-4, 5-Methylpyrimidine-2-carboxylic acid.

Related Products of 99420-75-4, The major producers of chemicals have been the Europe, Japan and China. Due to the growing call for a cleaner, greener environment, people will have to find innovative ways to maintain their relevance. Here is a compound 99420-75-4, name is 5-Methylpyrimidine-2-carboxylic acid. This compound has unique chemical properties. The synthetic route is as follows.

To a solution of 5-methylpyrimidine-2-carboxylic acid (1 g, 7.24 mmol) in DMF (72.4 mL) was added N,O-dimethylhydroxylamine hydrochloride (0.777 g, 7.96 mmol). The mixture was cooled to 0 C and 1 -propanephosphonic acid cyclic anhydride (50 wt. % solution in EtOAc, 9.21 mL, 14.48 mmol) was added droppwise. The mixture was then allowed to warm to RT overnight. LCMS indicated complete conversion to product. The mixture was then diluted with water, extracted with CHC13 :IPA (3:1) and washed with brine, and a saturated aqueous NaHCO3 solution. The mixture was then dried over Na2 SO4, concentrated in vacuo, and purified by silica gelchromato graph (0-100% Heptanes :EtOAc) providing N-methoxy-N,5-dimethylpyrimidine-2-carboxamide (0.7 g, 3.86 mmol, 53.4 % yield). 1H NMR (500 MHz, CDC13) oe 8.61 – 8.69 (m, 2 H) 3.61 – 3.79 (m, 3 H) 3.27 – 3.47 (m, 3 H) 2.34 – 2.45 (m, 3 H). LCMS-ESI (pos.) m/z: 182.2 (M+H)t

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about 99420-75-4, 5-Methylpyrimidine-2-carboxylic acid.

Reference:
Patent; AMGEN INC.; BROWN, Matthew; CHEN, Ning; CHEN, Xiaoqi; CHEN, Yinhong; CHENG, Alan C.; CONNORS, Richard V.; DEIGNAN, Jeffrey; DRANSFIELD, Paul John; DU, Xiaohui; FU, Zice; HARVEY, James S.; HEATH, Julie Anne; HEUMANN, Lars V.; HOUZE, Jonathan; KAYSER, Frank; KHAKOO, Aarif Yusuf; KOPECKY, David J.; LAI, Su-Jen; MA, Zhihua; MEDINA, Julio C.; MIHALIC, Jeffrey T.; OLSON, Steven H.; PATTAROPONG, Vatee; SWAMINATH, Gayathri; WANG, Xiaodong; WANSKA, Malgorzata; YEH, Wen-Chen; (815 pag.)WO2018/97944; (2018); A1;,
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

Application of 99420-75-4

With the rapid development of chemical substances, we look forward to future research findings about 99420-75-4.

As we all know, there are many different methods for the synthesis of a compound, and people can choose the synthesis method that suits their own laboratory according to the actual situation. 99420-75-4, name is 5-Methylpyrimidine-2-carboxylic acid, molecular formula is C6H6N2O2, The compound is widely used in many fields, so it is necessary to find a new synthetic route. The downstream synthesis method of this compound is introduced below. SDS of cas: 99420-75-4

To a solution of 5-methylpyrimidine-2-carboxylic acid (1 g, 7.24 mmol) in DMF (72.4 mL) was added 5-methylpyrimidine-2-carboxylic acid (1 g, 7.24mmol), and N,O- dimethylhydroxylamine hydrochloride (0.777 g, 7.96 mmol). The mixture was cooled to 0 oC and 1-propanephosphonic acid cyclic anhydride, 50 wt. % solution in EtOAc (9.21 mL, 14.48 mmol) was added dropwise. The mixture was allowed to warm to RT overnight after which LCMS indicated complete conversion to product. The mixture was diluted with water, extracted with CHCl3:IPA (3:1) and washed with brine and then NaHCO3. The mixture was dried over Na2SO4, concentrated in vacuo and purified by silica gelchromatograph (0-100% heptanes:EtOAc) to yield N-methoxy-N,5- dimethylpyrimidine-2-carboxamide (0.7 g, 3.86 mmol, 53.4 % yield). 1H NMR (500 MHz, CDCl3) delta 8.61 – 8.69 (m, 2 H) 3.61 – 3.79 (m, 3 H) 3.27 – 3.47 (m, 3 H) 2.34 – 2.45 (m, 3 H). LCMS-ESI (pos.) m/z: 182.2 (M+H)+.

With the rapid development of chemical substances, we look forward to future research findings about 99420-75-4.

Reference:
Patent; AMGEN INC.; CHEN, Ning; CHEN, Yinhong; DEBENEDETTO, Mikkel V.; DRANSFIELD, Paul John; HARVEY, James S.; HEATH, Julie Anne; HOUZE, Jonathan; KHAKOO, Aarif Yusuf; LAI, Su-Jen; MA, Zhihua; NISHIMURA, Nobuko; PATTAROPONG, Vatee; SWAMINATH, Gayathri; YEH, Wen-Chen; KREIMAN, Charles; (308 pag.)WO2018/93579; (2018); A1;,
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

A new synthetic route of 99420-75-4

At the same time, in my other blogs, there are other synthetic methods of this type of compound,99420-75-4, 5-Methylpyrimidine-2-carboxylic acid, and friends who are interested can also refer to it.

Adding a certain compound to certain chemical reactions, such as: 99420-75-4, 5-Methylpyrimidine-2-carboxylic acid, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound, Product Details of 99420-75-4, blongs to pyrimidines compound. Product Details of 99420-75-4

To a solution of 5-methylpyrimidine-2-carboxylic acid (1 g, 7.24 mmol) in DMF (72.4 mL) was added 5-methylpyrimidine-2-carboxylic acid (1 g, 7.24 mmol), N,Odimethyihydroxylamine hydrochloride (0.777 g, 7.96 mmol). The mixture was cooled to 0 C and 1 -propanephosphonic acid cyclic anhydride, 50 wt. % solution in EtOAc (9.21 mL, 14.48 mmol) was added droppwise. The mixture was allowed to warm to 23 C overnight. LCMS indicated complete conversion to product. The mixture was diluted with water, extracted with CHC13:IPA (3:1) and washed with brine, NaHCO3. The mixture was dried over Na2SO4, concentrated in vacuo and purified by silica gel chromatography (0-100% heptanes:EtOAc) to yield N-methoxy-N,5 -dimethylpyrimidine2-carboxamide (0.7 g, 3.86 mmol, 53.4 % yield). 1H NMR (500 MHz, CDC13) oe 8.61 -8.69 (m, 2 H) 3.61 – 3.79 (m, 3 H) 3.27 – 3.47 (m, 3 H) 2.34 – 2.45 (m, 3 H). LCMS-ESI (pos.) m/z: 182.2 (M+H)t

At the same time, in my other blogs, there are other synthetic methods of this type of compound,99420-75-4, 5-Methylpyrimidine-2-carboxylic acid, and friends who are interested can also refer to it.

Reference:
Patent; AMGEN INC.; CHEN, Yinhong; CHENG, Alan C.; DEBENEDETTO, Mikkel V.; DRANSFIELD, Paul John; HARVEY, James S.; HOUZE, Jonathan; KHAKOO, Aarif Yusuf; LAI, Su-Jen; MA, Zhihua; PATTAROPONG, Vatee; SWAMINATH, Gayathri; KREIMAN, Charles; MOEBIUS, David C.; SHARMA, Ankit; (543 pag.)WO2018/93580; (2018); A1;,
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia

The important role of 5-Methylpyrimidine-2-carboxylic acid

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about 99420-75-4, 5-Methylpyrimidine-2-carboxylic acid.

Reference of 99420-75-4, As we all know, there are many different methods for the synthesis of a compound, and people can choose the synthesis method that suits their own laboratory according to the actual situation. 99420-75-4, name is 5-Methylpyrimidine-2-carboxylic acid, molecular formula is C6H6N2O2, The compound is widely used in many fields, so it is necessary to find a new synthetic route. The downstream synthesis method of this compound is introduced below.

(0648) To a solution of 5-methylpyrimidine-2-carboxylic acid (1 g, 7.24 mmol) in DMF (72.4 mL) was added Nu,Omicron-dimethylhydroxylamine hydrochloride (0.777 g, 7.96 mmol). The mixture was cooled to 0 C and 1-propanephosphonic acid cyclic anhydride, (50 wt. % solution in EtOAc, 9.21 mL, 14.48 mmol) was added droppwise. The mixture was allowed to warm to 23 C overnight. LCMS indicated complete conversion to product. The mixture was then diluted with water, extracted with CHC13:IPA (3: 1) and washed with brine and a saturated aqueous NaHCC solution. The mixture was dried over Na2S04 concentrated in vacuo, and purified by silica gelchromatograph (0-100% Heptane:EtOAc) to yield Example 57.11 (0.7 g, 3.86 mmol, 53 % yield). NMR (500 MHz, CDC13) delta 8.61 – 8.69 (m, 2 H) 3.61 – 3.79 (m, 3 H) 3.27 – 3.47 (m, 3 H) 2.34 – 2.45 (m, 3 -ESI (pos.) m/z: 182.2 (M+H)+

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about 99420-75-4, 5-Methylpyrimidine-2-carboxylic acid.

Reference:
Patent; AMGEN INC.; DRANSFIELD, Paul John; HARVEY, James S.; MA, Zhihua; SHARMA, Ankit; (281 pag.)WO2019/89335; (2019); A1;,
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia