The nomenclature of pyrimidines is straightforward. However, like other heterocyclics, tautomeric hydroxyl groups yield complications since they exist primarily in the cyclic amide form. 554-01-8, formula is C5H7N3O, Name is 4-Amino-5-methylpyrimidin-2(1H)-one. For example, 2-hydroxypyrimidine is more properly named 2-pyrimidone. A partial list of trivial names of various pyrimidines exists. Name: 4-Amino-5-methylpyrimidin-2(1H)-one.
Cristinelli, Sara;Angelino, Paolo;Ciuffi, Angela research published 《 Exploring m6A and m5C epitranscriptomes upon viral infection: an example with HIV》, the research content is summarized as follows. A review. The role of RNA modifications in biol. processes has been the focus of an increasing number of studies in the last few years and is known nowadays as epitranscriptomics. Among others, N6-methyladenosine (m6A) and 5-methylcytosine (m5C) RNA modifications have been described on mRNA mols. and may have a role in modulating cellular processes. Epitranscriptomics is thus a new layer of regulation that must be considered in addition to transcriptomic analyses, as it can also be altered or modulated by exposure to any chem. or biol. agent, including viral infections. Here, we present a workflow that allows anal. of the joint cellular and viral epitranscriptomic landscape of the m6A and m5C marks simultaneously, in cells infected or not with the human immunodeficiency virus (HIV). Upon mRNA isolation and fragmentation from HIV- infected and non-infected cells, we used two different procedures: MeRIP-Seq, an RNA immunoprecipitation-based technique, to enrich for RNA fragments containing the m6A mark and BS-Seq, a bisulfite conversion-based technique, to identify the m5C mark at a single nucleotide resolution Upon methylation-specific capture, RNA libraries are prepared for high-throughput sequencing. We also developed a dedicated bioinformatics pipeline to identify differentially methylated (DM) transcripts independently from their basal expression profile. Overall, the methodol. allows exploration of multiple epitranscriptomic marks simultaneously and provides an atlas of DM transcripts upon viral infection or any other cell perturbation. This approach offers new opportunities to identify novel players and novel mechanisms of cell response, such as cellular factors promoting or restricting viral replication.
554-01-8, 5-Methylcytosine is a methylated form of the nucleobase cytosine occurring predominantly in cytosine-phosphate-guanine (CpG) islands that are produced by DNA methyltransferases and may regulate gene expression. Like cytosine, the DNA sequence containing 5-methylcytosine (5-mC) is able to be replicated without error and 5-mC can pair with guanine in double stranded DNA. However, DNA sequences containing a high local concentration of 5-mC may be less transcriptionally active than areas with higher ratios of unmodified cytosine.
5-Methylcytosine belongs to the class of organic compounds known as hydroxypyrimidines. These are organic compounds containing a hydroxyl group attached to a pyrimidine ring. Pyrimidine is a 6-membered ring consisting of four carbon atoms and two nitrogen centers at the 1- and 3- ring positions. 5-Methylcytosine exists as a solid, slightly soluble (in water), and a very weakly acidic compound (based on its pKa). Within the cell, 5-methylcytosine is primarily located in the cytoplasm. 5-Methylcytosine can be biosynthesized from cytosine. Outside of the human body, 5-methylcytosine can be found in tea. This makes 5-methylcytosine a potential biomarker for the consumption of this food product.
5-methylcytosine is a pyrimidine that is a derivative of cytosine, having a methyl group at the 5-position. It has a role as a human metabolite. It is a member of pyrimidines and a methylcytosine. It derives from a cytosine.
5-Methylcytosine is a nucleic acid that is found in the DNA and RNA of the cell. It is an important component of methylation, which is the process by which a methyl group is added to a molecule. This process can lead to cellular transformation, a process that can cause cancer. 5-Methylcytosine has also been shown as a molecular pathogenesis factor in infectious diseases such as HIV and herpes simplex virus type 1. The presence of 5-methylcytosine in nuclear DNA has been detected by analytical techniques such as gas chromatography/mass spectrometry (GC/MS). There are many analytical methods, including GC/MS, that can be used to detect 5-methylcytosine in cellular nuclei., Name: 4-Amino-5-methylpyrimidin-2(1H)-one
Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia