Hatano, Akihiko’s team published research in Organic & Biomolecular Chemistry in 2013 | CAS: 19030-75-2

Organic & Biomolecular Chemistry published new progress about Enzyme functional sites, active. 19030-75-2 belongs to class pyrimidines, name is 5-N-Propyluracil, and the molecular formula is C7H10N2O2, COA of Formula: C7H10N2O2.

Hatano, Akihiko published the artcileOne-pot approach to functional nucleosides possessing a fluorescent group using nucleobase-exchange reaction by thymidine phosphorylase, COA of Formula: C7H10N2O2, the main research area is fluorescent nucleoside preparation nucleobase exchange reaction thymidine phosphorylase.

Herein, β-selective coupling is described between a modified uracil and a deoxyribose to produce functionalized nucleosides catalyzed by thymidine phosphorylase derived from Escherichia coli. This enzyme mediates nucleobase-exchange reactions to convert unnatural nucleosides possessing a large functional group such as a fluorescent mol., coumarin or pyrene, linked via an alkyl chain at the C5 position of uracil. 5-(Coumarin-7-oxyhex-5-yn)uracil (C4U) displayed 57.2% conversion at 40% DMSO concentration in 1.0 mM phosphate buffer pH 6.8 to transfer thymidine to an unnatural nucleoside with C4U as the base. In the case of using 5-(pyren-1-methyloxyhex-5-yn)uracil (P4U) as the substrate, TP also could catalyze the reaction to generate a product with a very large functional group at 50% DMSO concentration (21.6% conversion). Docking simulations were carried out using MF myPrest for the modified uracil bound to the active site of TP. The uracil moiety of the substrate binds to the active site of TP, with the fluorescent moiety linked to the C5 position of the nucleobase located outside the surface of the enzyme. As a consequence, the bulky fluorescent moiety binding to uracil has little influence on the coupling reaction.

Organic & Biomolecular Chemistry published new progress about Enzyme functional sites, active. 19030-75-2 belongs to class pyrimidines, name is 5-N-Propyluracil, and the molecular formula is C7H10N2O2, COA of Formula: C7H10N2O2.

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia