The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives, 1722-12-9, formula is C4H3ClN2, Name is 2-Chloropyrimidine. including the nucleotides cytosine, thymine and uracil, thiamine (vitamin B1) and alloxan. Computed Properties of 1722-12-9.
Huan, Xiang;Wang, Yanhui;Peng, Xiaofeng;Xie, Shanshan;He, Qian;Zhang, Xiaofei;Lan, Lefu;Yang, Chunhao research published 銆?Design, synthesis and biological evaluations of substituted pyrazoles as pyrrolomycin analogues against staphylococcal biofilm銆? the research content is summarized as follows. Designed and synthesized two series of substituted pyrazoles I [R = 4,5-di-F, 4-F,5-Cl, 4,5-di-Cl, 4-F,5-Me, 3,5-di-F; R1 = CF3, CN] and II [R1 = H, CF3, CN, COOH, CO2Me, C(O)NH2; R2 = H, 5,7-di-Cl,8-MeO, 5,7-di-Cl,8-OH; X = O, S, SO2] as pyrrolomycin analogs. Compounds I [R = 4-F,5-Cl, 4,5-di-Cl; R1 = CF3, CtN] displayed potent antibacterial activity against various vancomycin-resistant Enterococcus fecalis (VRE) and methicillin-resistant Staphylococcus aureus (MRSA), and compound I [R = 4,5-di-Cl; R1 = CF3] showed the most potent activity against MRSA (MIC = 0.0625渭g/mL), vancomycin-intermediate Staphylococcus aureus (VISA) (MIC = 0.0313渭g/mL). Further study indicated that compound I [R = 4,5-di-Cl; R1 = CN] could significantly reduce the biofilm formation of MRSA and exhibited promising selectivity. In vitro liver microsomal stability was also evaluated and the results manifested that compound I [R = 4,5-di-Cl; R1 = CN] was metabolically stable in human liver microsomes.
Computed Properties of 1722-12-9, 2-Chloropyrimidine is a monochlorinated pyrimidine with plant growth regulating activity. Chloropyrimidine is a useful reagent in the preparation of antivirals and other biologically active compounds.
2-Chloropyrimidine undergoes cobalt-catalyzed cross-coupling reaction with aryl halides.
2-Chloropyrimidine is a molecule that can be synthesized by the oxidation of pyrimidine with hydrogen peroxide and hydrochloric acid. The reaction proceeds through an electrochemical process in which the oxidation catalyst is a platinum electrode. This reaction is catalyzed by the nucleophilic attack of malonic acid on the chloropyrimidine at the methylene group. This efficient method for making 2-chloropyrimidine has been applied to synthesize aryl halides, including phenyl chloropyrimidine and pyridyl chloropyrimidine, from their corresponding chloride and bromide precursors. The fluorescence properties of 2-chloropyrimidine have been studied in coordination chemistry, where it forms complexes with metal ions such as Mn2+. In this study, it was found that adsorption mechanisms are dependent on molecular size, charge density, kinetic energy, and adsorbent surface area., 1722-12-9.
Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia