The nomenclature of pyrimidines is straightforward. However, like other heterocyclics, tautomeric hydroxyl groups yield complications since they exist primarily in the cyclic amide form. 554-01-8, formula is C5H7N3O, Name is 4-Amino-5-methylpyrimidin-2(1H)-one. For example, 2-hydroxypyrimidine is more properly named 2-pyrimidone. A partial list of trivial names of various pyrimidines exists. HPLC of Formula: 554-01-8.
Huang, Bin;Wang, Jie;Han, Xiaobin;Gou, Jianyu;Pei, Zhouyang;Lu, Guangmei;Wang, Jing;Zhang, Chengsheng research published ã?The relationship between material transformation, microbial community and amino acids and alkaloid metabolites in the mushroom residue-prickly ash seed oil meal composting with biocontrol agent additionã? the research content is summarized as follows. This study investigated the effects of adding biocontrol microbes on metabolites and pathogenic microorganisms during mushroom residue composting and the relationships of metabolite changes with microbes and material transformation. The results showed that the addition of Bacillus subtilis (BS) and Trichoderma harzianum (TH) with mushroom residue promoted the conversion of organic carbon and nitrogen. The abundance of pathogenic microbes was increased in biocontrol microbial treatments. BS or TH treatments increased the levels of amino acids, carbohydrates, and bacteriostatic alkaloid metabolites. Network anal. revealed that the main microorganisms significantly related to alkaloid metabolites were Rhabdanaerobium, Atopostipes, Planifilum and Ureibacillus. The increased bacterial abundance and decreased NO-3-N and TOC were closely related to the increases in amino acid and alkaloid metabolites after biocontrol agent treatments. Generally, adding biocontrol microbes is an effective way to increase the levels of antibacterial metabolites, but there is a risk of increasing the abundance of pathogenic microbes.
HPLC of Formula: 554-01-8, 5-Methylcytosine is a methylated form of the nucleobase cytosine occurring predominantly in cytosine-phosphate-guanine (CpG) islands that are produced by DNA methyltransferases and may regulate gene expression. Like cytosine, the DNA sequence containing 5-methylcytosine (5-mC) is able to be replicated without error and 5-mC can pair with guanine in double stranded DNA. However, DNA sequences containing a high local concentration of 5-mC may be less transcriptionally active than areas with higher ratios of unmodified cytosine.
5-Methylcytosine belongs to the class of organic compounds known as hydroxypyrimidines. These are organic compounds containing a hydroxyl group attached to a pyrimidine ring. Pyrimidine is a 6-membered ring consisting of four carbon atoms and two nitrogen centers at the 1- and 3- ring positions. 5-Methylcytosine exists as a solid, slightly soluble (in water), and a very weakly acidic compound (based on its pKa). Within the cell, 5-methylcytosine is primarily located in the cytoplasm. 5-Methylcytosine can be biosynthesized from cytosine. Outside of the human body, 5-methylcytosine can be found in tea. This makes 5-methylcytosine a potential biomarker for the consumption of this food product.
5-methylcytosine is a pyrimidine that is a derivative of cytosine, having a methyl group at the 5-position. It has a role as a human metabolite. It is a member of pyrimidines and a methylcytosine. It derives from a cytosine.
5-Methylcytosine is a nucleic acid that is found in the DNA and RNA of the cell. It is an important component of methylation, which is the process by which a methyl group is added to a molecule. This process can lead to cellular transformation, a process that can cause cancer. 5-Methylcytosine has also been shown as a molecular pathogenesis factor in infectious diseases such as HIV and herpes simplex virus type 1. The presence of 5-methylcytosine in nuclear DNA has been detected by analytical techniques such as gas chromatography/mass spectrometry (GC/MS). There are many analytical methods, including GC/MS, that can be used to detect 5-methylcytosine in cellular nuclei., 554-01-8.
Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia