Jiao, Jiao team published research in Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences in 2022 | 554-01-8

554-01-8, 5-Methylcytosine is a methylated form of the nucleobase cytosine occurring predominantly in cytosine-phosphate-guanine (CpG) islands that are produced by DNA methyltransferases and may regulate gene expression. Like cytosine, the DNA sequence containing 5-methylcytosine (5-mC) is able to be replicated without error and 5-mC can pair with guanine in double stranded DNA. However, DNA sequences containing a high local concentration of 5-mC may be less transcriptionally active than areas with higher ratios of unmodified cytosine.
5-Methylcytosine belongs to the class of organic compounds known as hydroxypyrimidines. These are organic compounds containing a hydroxyl group attached to a pyrimidine ring. Pyrimidine is a 6-membered ring consisting of four carbon atoms and two nitrogen centers at the 1- and 3- ring positions. 5-Methylcytosine exists as a solid, slightly soluble (in water), and a very weakly acidic compound (based on its pKa). Within the cell, 5-methylcytosine is primarily located in the cytoplasm. 5-Methylcytosine can be biosynthesized from cytosine. Outside of the human body, 5-methylcytosine can be found in tea. This makes 5-methylcytosine a potential biomarker for the consumption of this food product.
5-methylcytosine is a pyrimidine that is a derivative of cytosine, having a methyl group at the 5-position. It has a role as a human metabolite. It is a member of pyrimidines and a methylcytosine. It derives from a cytosine.
5-Methylcytosine is a nucleic acid that is found in the DNA and RNA of the cell. It is an important component of methylation, which is the process by which a methyl group is added to a molecule. This process can lead to cellular transformation, a process that can cause cancer. 5-Methylcytosine has also been shown as a molecular pathogenesis factor in infectious diseases such as HIV and herpes simplex virus type 1. The presence of 5-methylcytosine in nuclear DNA has been detected by analytical techniques such as gas chromatography/mass spectrometry (GC/MS). There are many analytical methods, including GC/MS, that can be used to detect 5-methylcytosine in cellular nuclei., Synthetic Route of 554-01-8

Pyrimidine is an aromatic heterocyclic organic compound similar to pyridine. One of the three diazines (six-membered heterocyclics with two nitrogen atoms in the ring), it has the nitrogen atoms at positions 1 and 3 in the ring. 554-01-8, formula is C5H7N3O, Name is 4-Amino-5-methylpyrimidin-2(1H)-one. The pyrimidine ring system has wide occurrence in nature as substituted and ring fused compounds and derivatives, including the nucleotides cytosine, thymine and uracil, thiamine (vitamin B1) and alloxan. Synthetic Route of 554-01-8.

Jiao, Jiao;Tang, Qi;Wang, Tie-jie;Fan, Jin;Zhang, Tong-rui;Bi, Kai-shun;Li, Qing;Liu, Ran research published �The therapeutic effect of Xuanbai Chengqi Decoction on chronic obstructive pulmonary disease with excessive heat in the lung and fu-organs based on gut and lung microbiota as well as metabolic profiles� the research content is summarized as follows. As a prescription for treating lung inflammation and intestinal diseases, Xuanbai Chengqi Decoction (XBCQD) in clin. practice can effectively treat COPD with excessive heat in the lung and fu-organs, which is characterized by phlegm-heat accumulation in the lung and constipation. This study aims to find the potential biomarkers of COPD with excessive heat in the lung and fu-organs from two aspects of lung and intestine based on metabolomics and microbiota anal., and to evaluate the efficacy of XBCQD as well as to explore the mechanism of drug function according the regulating effect of drugs on these markers. The HPLC-Q-TOF-MS/MS, 16SrDNA technol. and multiple statistical methods were used to trace the process of disease and curative effect with XBCQD. Results showed that the onset and development of disease was associated with the imbalance of 41 differential metabolites in plasma, bronchoalveolar lavage fluid and feces and 82 bacteria at the levels of phylum, class, order, family and genus from lung and intestine, including Escherichia-Shigella. However, after treatment with XBCQD, 30 differential metabolites mainly involving in the metabolism of linoleic acid, taurine and hypotaurine metabolism, arachidonic acid metabolism, biosynthesis of primary bile acids, tryptophan metabolism, arginine and proline metabolism and 65 pulmonary and intestinal bacteria at all levels were reversed in the drug group. In addition, the results of the correlation anal. showed that specific microbiota from lung and intestine and reversed differential metabolites had a significant correlation, and they could affect each other in the course of disease occurrence and treatment. This study preliminarily confirmed that XBCQD can be used to treat COPD with excessive heat in the lung and fu-organs through lung-intestine simultaneous treatment. It also provided new strategies for the treatment of lung diseases or intestinal diseases, and new research ideas for the evaluation of drug efficacy.

554-01-8, 5-Methylcytosine is a methylated form of the nucleobase cytosine occurring predominantly in cytosine-phosphate-guanine (CpG) islands that are produced by DNA methyltransferases and may regulate gene expression. Like cytosine, the DNA sequence containing 5-methylcytosine (5-mC) is able to be replicated without error and 5-mC can pair with guanine in double stranded DNA. However, DNA sequences containing a high local concentration of 5-mC may be less transcriptionally active than areas with higher ratios of unmodified cytosine.
5-Methylcytosine belongs to the class of organic compounds known as hydroxypyrimidines. These are organic compounds containing a hydroxyl group attached to a pyrimidine ring. Pyrimidine is a 6-membered ring consisting of four carbon atoms and two nitrogen centers at the 1- and 3- ring positions. 5-Methylcytosine exists as a solid, slightly soluble (in water), and a very weakly acidic compound (based on its pKa). Within the cell, 5-methylcytosine is primarily located in the cytoplasm. 5-Methylcytosine can be biosynthesized from cytosine. Outside of the human body, 5-methylcytosine can be found in tea. This makes 5-methylcytosine a potential biomarker for the consumption of this food product.
5-methylcytosine is a pyrimidine that is a derivative of cytosine, having a methyl group at the 5-position. It has a role as a human metabolite. It is a member of pyrimidines and a methylcytosine. It derives from a cytosine.
5-Methylcytosine is a nucleic acid that is found in the DNA and RNA of the cell. It is an important component of methylation, which is the process by which a methyl group is added to a molecule. This process can lead to cellular transformation, a process that can cause cancer. 5-Methylcytosine has also been shown as a molecular pathogenesis factor in infectious diseases such as HIV and herpes simplex virus type 1. The presence of 5-methylcytosine in nuclear DNA has been detected by analytical techniques such as gas chromatography/mass spectrometry (GC/MS). There are many analytical methods, including GC/MS, that can be used to detect 5-methylcytosine in cellular nuclei., Synthetic Route of 554-01-8

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia