Khoshfetrat, Seyyed Mehdi team published research in Sensors and Actuators, B: Chemical in 2022 | 554-01-8

554-01-8, 5-Methylcytosine is a methylated form of the nucleobase cytosine occurring predominantly in cytosine-phosphate-guanine (CpG) islands that are produced by DNA methyltransferases and may regulate gene expression. Like cytosine, the DNA sequence containing 5-methylcytosine (5-mC) is able to be replicated without error and 5-mC can pair with guanine in double stranded DNA. However, DNA sequences containing a high local concentration of 5-mC may be less transcriptionally active than areas with higher ratios of unmodified cytosine.
5-Methylcytosine belongs to the class of organic compounds known as hydroxypyrimidines. These are organic compounds containing a hydroxyl group attached to a pyrimidine ring. Pyrimidine is a 6-membered ring consisting of four carbon atoms and two nitrogen centers at the 1- and 3- ring positions. 5-Methylcytosine exists as a solid, slightly soluble (in water), and a very weakly acidic compound (based on its pKa). Within the cell, 5-methylcytosine is primarily located in the cytoplasm. 5-Methylcytosine can be biosynthesized from cytosine. Outside of the human body, 5-methylcytosine can be found in tea. This makes 5-methylcytosine a potential biomarker for the consumption of this food product.
5-methylcytosine is a pyrimidine that is a derivative of cytosine, having a methyl group at the 5-position. It has a role as a human metabolite. It is a member of pyrimidines and a methylcytosine. It derives from a cytosine.
5-Methylcytosine is a nucleic acid that is found in the DNA and RNA of the cell. It is an important component of methylation, which is the process by which a methyl group is added to a molecule. This process can lead to cellular transformation, a process that can cause cancer. 5-Methylcytosine has also been shown as a molecular pathogenesis factor in infectious diseases such as HIV and herpes simplex virus type 1. The presence of 5-methylcytosine in nuclear DNA has been detected by analytical techniques such as gas chromatography/mass spectrometry (GC/MS). There are many analytical methods, including GC/MS, that can be used to detect 5-methylcytosine in cellular nuclei., COA of Formula: C5H7N3O

The systematic study of pyrimidines began in 1884 with Pinner, who synthesized derivatives by condensing ethyl acetoacetate with amidines. Pinner first proposed the name “pyrimidin” in 1885. 554-01-8, formula is C5H7N3O, Name is 4-Amino-5-methylpyrimidin-2(1H)-one. The parent compound was first prepared by Gabriel and Colman in 1900, by conversion of barbituric acid to 2,4,6-trichloropyrimidine followed by reduction using zinc dust in hot water. COA of Formula: C5H7N3O.

Khoshfetrat, Seyyed Mehdi;Dorraji, Parisa Seyed;Fotouhi, Lida;Hosseini, Mehdi;Khatami, Fatemeh;Moazami, Hamid Reza;Omidfar, Kobra research published 《 Enhanced electrochemiluminescence biosensing of gene-specific methylation in thyroid cancer patients′ plasma based integrated graphitic carbon nitride-encapsulated metal-organic framework nanozyme optimized by central composite design》, the research content is summarized as follows. Circulating cell free DNA (cfDNA) methylation is a novel type of cancer biomarker, but its minuscule proportion of total DNA makes proper anal. difficult in clin. samples. Herein, a sensitive electrochemiluminescence immuno-DNA sensor was designed to analyze DNA methylation using sandwiching the target methylated DNA between the magnetic nanoparticles/anti-5-methylcytosine monoclonal antibody (MNPs/anti-5mc) bioconjugate and luminol-loaded within phosphorylated DNA capture probe-immobilizedC3N4 NS@UiO-66 core@shell nanozyme. Taking advantages of increased concentration of C3N4 NS nanozymes′ ·OH-generation, nanoproximity effect of C3N4 NS and luminol, high d. coordination of capture probe on the UiO-66 metal organic framework (MOF), MNPs′ function in improving the signal-to-background ratio (S/B) in complicated plasma media, and remarkable electrocatalytic activity of reduced graphene oxide-modified pencil graphite electrode (rGO/PGE), multiple signal amplification was achieved without bisulfite and PCR amplification. The immuno-DNA sensor offers a linear response across a wide dynamic range from 20 pg to 20 ng, with a detection limit of 10 pg, when optimized by a face-centered central composite design (FCCD). Our method can differentiate methylation levels as low as 0.1%. Tumor-specific methylation DNA is definitely identified in the plasma of 9 of 10 thyroid cancer patients′ plasma. The 91% clin. sensitivity implies strong clin. diagnosis consistency. The suggested method was successfully utilized to evaluate methylated DNA in human blood plasma, demonstrating the platform′s potential for disease diagnostics and biochem. research.

554-01-8, 5-Methylcytosine is a methylated form of the nucleobase cytosine occurring predominantly in cytosine-phosphate-guanine (CpG) islands that are produced by DNA methyltransferases and may regulate gene expression. Like cytosine, the DNA sequence containing 5-methylcytosine (5-mC) is able to be replicated without error and 5-mC can pair with guanine in double stranded DNA. However, DNA sequences containing a high local concentration of 5-mC may be less transcriptionally active than areas with higher ratios of unmodified cytosine.
5-Methylcytosine belongs to the class of organic compounds known as hydroxypyrimidines. These are organic compounds containing a hydroxyl group attached to a pyrimidine ring. Pyrimidine is a 6-membered ring consisting of four carbon atoms and two nitrogen centers at the 1- and 3- ring positions. 5-Methylcytosine exists as a solid, slightly soluble (in water), and a very weakly acidic compound (based on its pKa). Within the cell, 5-methylcytosine is primarily located in the cytoplasm. 5-Methylcytosine can be biosynthesized from cytosine. Outside of the human body, 5-methylcytosine can be found in tea. This makes 5-methylcytosine a potential biomarker for the consumption of this food product.
5-methylcytosine is a pyrimidine that is a derivative of cytosine, having a methyl group at the 5-position. It has a role as a human metabolite. It is a member of pyrimidines and a methylcytosine. It derives from a cytosine.
5-Methylcytosine is a nucleic acid that is found in the DNA and RNA of the cell. It is an important component of methylation, which is the process by which a methyl group is added to a molecule. This process can lead to cellular transformation, a process that can cause cancer. 5-Methylcytosine has also been shown as a molecular pathogenesis factor in infectious diseases such as HIV and herpes simplex virus type 1. The presence of 5-methylcytosine in nuclear DNA has been detected by analytical techniques such as gas chromatography/mass spectrometry (GC/MS). There are many analytical methods, including GC/MS, that can be used to detect 5-methylcytosine in cellular nuclei., COA of Formula: C5H7N3O

Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia