Influence of the C-5 substitution in polysubstituted pyrimidines on inhibition of prostaglandin E2 production was written by Kolman, Viktor;Kalcic, Filip;Jansa, Petr;Zidek, Zdenek;Janeba, Zlatko. And the article was included in European Journal of Medicinal Chemistry in 2018.Application of 40230-24-8 This article mentions the following:
As a part of a broader structure-activity relationship study of substituted 2-aminopyrimidines, the influence of the C-5 substitution on inhibition of prostaglandin E2 (PGE2) production was studied. Thirty compounds were prepared starting from the corresponding 2-amino-4,6-dichloropyrimidines using Suzuki cross-coupling. It was shown previously that 2-amino-4,6-dichloropyrimidines with smaller C-5 substituent (hydrogen and methyl) were devoid of significant activity, while 5-Bu derivatives exhibited prominent potency. In this study, on the other hand, both monoaryl- and bisarylpyrimidines were potent inhibitors of PGE2 production regardless the length of the C-5 substituent (hydrogen, Me, n-butyl). Moreover, the shorter the C-5 substituent the higher potency to inhibit PGE2 production was observed 2-Amino-4,6-diphenylpyrimidine was the best inhibitor of PGE2 production with IC50 = 3 nM and no cytotoxicity. The most potent inhibitors deserve further preclin. evaluation as potential anti-inflammatory agents. In the experiment, the researchers used many compounds, for example, 4,6-Diphenylpyrimidin-2-amine (cas: 40230-24-8Application of 40230-24-8).
4,6-Diphenylpyrimidin-2-amine (cas: 40230-24-8) belongs to pyrimidine derivatives. The pyrimidine nitrogenous bases are derived from the organic compound pyrimidine through the addition of various functional groups. We all know its importance to life – pyrimidine and purine bases are included in the structure of DNA and RNA.Application of 40230-24-8
Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia