Dynamic extrinsic pacing of the HOX clock in human axial progenitors controls motor neuron subtype specification was written by Mouilleau, Vincent;Vaslin, Celia;Robert, Remi;Gribaudo, Simona;Nicolas, Nour;Jarrige, Margot;Terray, Angelique;Lesueur, Lea;Mathis, Mackenzie W.;Croft, Gist;Daynac, Mathieu;Rouiller-Fabre, Virginie;Wichterle, Hynek;Ribes, Vanessa;Martinat, Cecile;Nedelec, Stephane. And the article was included in Development (Cambridge, United Kingdom) in 2021.Recommanded Product: 219580-11-7 The following contents are mentioned in the article:
Rostro-caudal patterning of vertebrates depends on the temporally progressive activation of HOX genes within axial stem cells that fuel axial embryo elongation. Whether the pace of sequential activation of HOX genes, the ‘HOX clock’, is controlled by intrinsic chromatin-based timing mechanisms or by temporal changes in extrinsic cues remains unclear. Here, we studied HOX clock pacing in human pluripotent stem cell-derived axial progenitors differentiating into diverse spinal cord motor neuron subtypes. We show that the progressive activation of caudal HOX genes is controlled by a dynamic increase in FGF signaling. Blocking the FGF pathway stalled induction of HOX genes, while a precocious increase of FGF, alone or with GDF11 ligand, accelerated the HOX clock. Cells differentiated under accelerated HOX induction generated appropriate posterior motor neuron subtypes found along the human embryonic spinal cord. The pacing of the HOX clock is thus dynamically regulated by exposure to secreted cues. Its manipulation by extrinsic factors provides synchronized access to multiple human neuronal subtypes of distinct rostro-caudal identities for basic and translational applications. This study involved multiple reactions and reactants, such as 1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7Recommanded Product: 219580-11-7).
1-(tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea (cas: 219580-11-7) belongs to pyrimidine derivatives. The pyrimidine derivatives can easily interact with enzymes, genetic materials, and bio components within the cell. We all know its importance to life – pyrimidine and purine bases are included in the structure of DNA and RNA.Recommanded Product: 219580-11-7
Referemce:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia