Each compound has different characteristics, and only by selecting the characteristics of the compound suitable for a specific situation can the compound be applied on a large scale. 14160-93-1, name is 4-Amino-6-chloropyrimidine-5-carbaldehyde. This compound has unique chemical properties. The synthetic route is as follows. name: 4-Amino-6-chloropyrimidine-5-carbaldehyde
6-Chloro-5-(2-methoxyvinyl)pyrimidin-4-ylamine (28) [0170] A suspension of (methoxymethyl)triphenylphosphonium chloride (276.0 g, 0.807 mol, 1.1 equiv) in THF (1.5 L) was cooled in an ice/salt bath to -2 C. and 1 M potassium tert-butoxide (KOtBu) in THF (807 mL, 0.807 mol, 1.1 equiv) was added over 1.5 h at -2 to -3 C. The deep red-orange mixture was stirred at -2 to -3 C. for 1 h. 4-Amino-6-chloropyrimidine-5-carbaldehyde (115.2 g, 0.7338 mol, 1.0 equiv) was then added portion wise to the reaction mixture as a solid form using THF (200 mL) to rinse the container and funnel. During the addition the reaction temperature increased from -3 to 13 C. and a brown color developed. When the reaction temperature dropped to 10 C., the cooling bath was removed and the reaction mixture was allowed to warm to ambient temperature and stirred at ambient temperature for 42 h. The reaction mixture was cooled to -2 C. before being quenched by the slow addition of saturated NH4Cl aqueous solution (750 mL). The mixture was concentrated under reduced pressure to remove most of the THF. The residue was partitioned between EtOAc (3 L) and H2O (1 L). The organic phase was filtered to remove insoluble material at the interface, then extracted with 2 N HCl (4×250 mL) followed by 3 N HCl (2×250 mL). The combined HCl extracts were back-extracted with EtOAc (500 mL) then filtered through Celite to remove insoluble material. The filtrate was cooled in an ice/brine bath, adjusted to pH 8 with a 6 N aqueous NaOH solution and extracted with EtOAc (3×1 L). The combined EtOAc extracts were washed with brine (1 L), dried over Na2SO4, stirred with charcoal (10 g) and silica gel (10 g) for 1 h. The mixture was filtered through Celite, washing the Celite pad with EtOAc (1 L). The filtrate was concentrated, co-evaporating residual EtOAc with n-heptane (500 mL). The resulting tan solid was pumped under high vacuum for 2 h to afford crude 6-chloro-5-(2-methoxyvinyl)pyrimidin-4-ylamine (72.3 g, 136.2 g theoretical, 53.1%). The crude desired product was used in the following reaction without further purification. A sample of crude product (2.3 g) was purified by silica gel column chromatography on, eluting with 0-35% EtOAc/n-heptane to give 1.7 g of pure 6-chloro-5-(2-methoxyvinyl)pyrimidin-4-ylamine as a white solid, which was found to be a 1 to 2 mixture of E/Z isomers. 1H NMR (300 MHz, DMSO-d6) for E-isomer: delta 8.02 (s, 1H), 7.08 (bs, 2H), 6.92 (d, 1H, J=13.1), 5.35 (d, 1H, J=13.0 Hz), 3.68 (s, 3H) ppm and for Z-isomer: delta 8.06 (s, 1H), 7.08 (bs, 2H), 6.37 (d, 1H, J=6.8 Hz), 5.02 (d, 1H, J=6.7 Hz), 3.69 (s, 3H) ppm; C7H8ClN3O (MW, 185.61), LCMS (EI) m/e 186/188 (M++H).
If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, 14160-93-1, 4-Amino-6-chloropyrimidine-5-carbaldehyde.
Reference:
Patent; Incyte Corporation; Liu, Pingli; Wang, Dengjin; Wu, Yongzhong; Cao, Ganfeng; Xia, Michael; US2014/256941; (2014); A1;,
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia