Adding a certain compound to certain chemical reactions, such as: 504-17-6, 4,6-Dihydroxy-2-mercaptopyrimidine, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound, 504-17-6, blongs to pyrimidines compound. 504-17-6
General procedure: A mixture of an aldehyde (0.25mmol), 2-thiobarbituric acid (0.5mmol), ammonium acetate (0.3mmol) and CuFe2O4 (10mol%) were added in distilled H2O. Then, ultrasonic probe was directly immersed in the resulting mixture. After completion of the reaction (TLC), the solvent was evaporated and the precipitate was washed from ethanol and hot water to afford the pure product. All products were identified by physical and spectroscopic data. 2.4.1 5-Phenyl-2,8-dithioxo-2,3,7,8,9,10-hexahydropyrido[2,3-d:6,5-d]dipyrimidine-4,6(1H,5H)-dione (0009) Cream powder; M.P: 211C Lit [39]. (M.Prep: 238C, decompose); IR (KBr) nu (cm-1): 3452 (NH), 3054 (C-H, sp2 stretch), 2898 (C-H, sp3), 1637 (C=O), 1440, 1559 (C=C, Ar); 1H NMR (DMSO-d6, 400MHz) delta (ppm): 5.93 (s, 1H, CH), 6.98-6.99 (d, 2H, J=4Hz), 7.05-7.08 (m, 1H), 7.15 (s, 2H), 7.42-7.72 (m, 1H), 7.89-8.20 (m, 1H), 11.33-11.66 (s, 1H), 12.04-12.09 (m, 1H).
With the rapid development of chemical substances, we look forward to future research findings about 504-17-6.
Reference:
Article; Naeimi, Hossein; Didar, Asieh; Ultrasonics Sonochemistry; vol. 34; (2017); p. 889 – 895;,
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia