New downstream synthetic route of 591-12-8

When you point to this article, it is believed that you are also very interested in this compound(591-12-8)Name: 5-Methylfuran-2(3H)-one and due to space limitations, I can only present the most important information.

Latos, Piotr; Szelwicka, Anna; Boncel, Slawomir; Jurczyk, Sebastian; Swadzba-Kwasny, Malgorzata; Chrobok, Anna published the article 《Highly Efficient Synthesis of Alkyl Levulinates from α-Angelica Lactone, Catalyzed with Lewis Acidic Trifloaluminate Ionic Liquids Supported on Carbon Nanotubes》. Keywords: alkyl levulinate angelica lactone catalyst trifloaluminate supported carbon nanotube; Lewis acid ionic liquid catalyst supported alkyl levulinate MWCNT.They researched the compound: 5-Methylfuran-2(3H)-one( cas:591-12-8 ).Name: 5-Methylfuran-2(3H)-one. Aromatic heterocyclic compounds can be divided into two categories: single heterocyclic and fused heterocyclic. In addition, there is a lot of other information about this compound (cas:591-12-8) here.

Levulinic acid esters (LAEs) were synthesized from α-angelica lactone and alcs., in a reaction catalyzed by a new family of chloride-free Lewis acidic ionic liquids, containing trifloaluminate anions, [Al(OTf)3+n]n-. Changing the catalyst from poorly soluble Al(OTf)3 (used as suspension) to fully homogeneous trifloaluminate ionic liquids resulted in shorter reaction times required for full α-AL conversion (60 min at 60 °C for 0.1 mol % catalyst loading) and unprecedented selectivities to LAEs, reaching >99%. Supporting the trifloaluminate ionic liquid on multiwalled carbon nanotubes gave an easily recyclable system, with no leaching observed over six cycles. Mechanistic considerations suggest that the propensity of Al(OTf)3 to undergo very slow hydrolysis results in the correct balance of Bronsted and Lewis acidic sites in the system, which inhibit byproduct formation.

When you point to this article, it is believed that you are also very interested in this compound(591-12-8)Name: 5-Methylfuran-2(3H)-one and due to space limitations, I can only present the most important information.

Reference:
Pyrimidine | C4H4N2 – PubChem,
Pyrimidine – Wikipedia